Log in

Atoms and bonds in molecules: topology and properties

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The atoms and bonds in molecules (ABIM) theory Warburton et al. (J Phys Chem A 115:852, 2011) partitions the molecular electron density into atomic and bonding regions using radial density. The concept is motivated by the radial distribution function of atoms which exhibit shell structure, where each shell contains a realistic number of electrons. In this paper, we define molecular radial density and investigate its topology in 2D planes of halogens, diatomics, and hydrides. The terminology employed to classify the radial density topology of atoms and molecules is then presented. The ABIM model quantifies both the molecular atom and bond. Here, we describe and calculate properties of ABIM and discuss how these properties correlate with expected trends. ABIM makes it possible to calculate the properties of atoms and bonds in molecules including number of electrons, shape, volume, dipole, and expectation values. The radial density model provides an intuitive description of ABIM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Warburton PL, Poirier RA, Nippard D (2011) J Phys Chem A 115:852

    Article  CAS  Google Scholar 

  2. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca, NY

    Google Scholar 

  3. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  4. Yáñez M, Stewart RF, Pople JA (1978) Acta Cryst A34:641

    Google Scholar 

  5. Hirshfeld FL (1977) Theor Chim Acta 44:129

    Article  CAS  Google Scholar 

  6. Moffitt W (1951) Proc R Soc Lond Ser A 210:245

    Article  CAS  Google Scholar 

  7. Bader RFW (1985) Acc Chem Res 18:9

    Article  CAS  Google Scholar 

  8. Bader RFW, Larouche A, Gatti C, Carroll MT, MacDougall PJ, Wiberg KB (1987) J Chem Phys 87(2):1142

    Article  CAS  Google Scholar 

  9. Bader RFW, Matta CF (2004) J Phys Chem A 108:8385

    Article  CAS  Google Scholar 

  10. Bader RFW (2010) J Phys Chem A 114:7431

    Article  CAS  Google Scholar 

  11. Stewart RF (1970) J Chem Phys 53(1):205

    Article  CAS  Google Scholar 

  12. Politzer P, Parr RG (1976) J Chem Phys 64:4634

    Article  CAS  Google Scholar 

  13. Boyd RJ (1977) J Chem Phys 66:356

    Article  CAS  Google Scholar 

  14. Schmider H, Sagar RP, Smith VH (1991) J Chem Phys 94:8627

    Article  CAS  Google Scholar 

  15. Becke AD (1988) J Chem Phys 88(4):2547

    Article  CAS  Google Scholar 

  16. Poirier RA, Hollett JW, Warburton PL, MUNgauss, Memorial University, Chemistry Department, St. John’s, NL A1B 3X7. With contributions from Alrawashdeh A, Becker J-P, Besaw JE, Bungay SD, Colonna F, El-Sherbiny A, Gosse T, Keefe D, Kelly A, Nippard D, Pye CC, Reid D, Saputantri K, Shaw M, Staveley M, Stueker O, Wang Y, **dos J

  17. Gill PMW, Johnson BG, Pople JA (1993) Chem Phys Lett 209:506

    Article  CAS  Google Scholar 

  18. Simas AM, Sagar RP, Ku ACT, Smith VH (1988) Can J Chem 66:1923

    Article  CAS  Google Scholar 

  19. Hollett JW, Kelly A, Poirier RA (2006) J Phys Chem A 110(51):13884

    Article  CAS  Google Scholar 

  20. Blair SA, Thakkar AJ (2014) Chem Phys Lett 609:113

    Article  CAS  Google Scholar 

  21. Häser M (1996) JACS 118:7311

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the Natural Sciences and Engineering Council of Canada and the Atlantic Excellence Network (ACEnet) and Compute Canada for the computer time. We would also like to dedicate this paper to Marco Häser, who was the first to define molecular radial density [21]. The authors express their best wishes to Peter Surjan on the occasion of his 60th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. Poirier.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2015_1717_MOESM1_ESM.pdf

Analytical derivation of \(\nabla \rho _{\mathrm{rad}}\) and \(\nabla ^2\rho _{\mathrm{rad}}\), larger versions of several figures, additional topology figures, and more tables of properties of molecular atoms and bonds are provided in the supporting information. (pdf 80842 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besaw, J.E., Warburton, P.L. & Poirier, R.A. Atoms and bonds in molecules: topology and properties. Theor Chem Acc 134, 117 (2015). https://doi.org/10.1007/s00214-015-1717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1717-4

Keywords

Navigation