Log in

Metallic and semiconducting 1D conjugated polymers based on –S–C\(\equiv \)C– repeating units in poly(sulfur acetylide)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The existence and the properties of a new 1D conjugated polymer, poly(sulfur acetylide), with –S–C\(\equiv \)C– repeating unit are predicted on the basis of density functional theory calculations. Depending on the conformation of the polymer, specifically on the C–S–C angles, the corresponding material is either a metallic conductor (C–S–C near linear) or a semiconductor (C–S–C not linear). It is a semiconductor with 1.6 eV band gap in the minimum energy conformation bent geometry. The polymer can be stretched out at a relatively large and impractical energy cost of 2.6 eV per –S–C\(\equiv \)C– unit upon which it becomes a metallic conductor. However, this semiconductor–metal transition appears to be unique in as much as it happens along a bending mode of the polymeric backbone. This new material appears to be easy to synthesize and is expected to be stable under normal conditions. Despite its simplicity and close relation to other well-known 1D conjugated polymers, such as poly(sulfur nitride) \(\hbox {(SN)}_{x}\), polyacetylene \(\hbox {(CH)}_{x}\) or polyyne (–C\(\equiv \)C–)\(_{x}\), poly(sulfur acetylide) still remains to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. André J, Delhalle J, Brédas J (1991) Quantum chemistry aided design of organic polymers: an introduction to the quantum chemistry of polymers and its applications. Lecture and course notes in chemistry series. World Scientific, ISBN 9789810200046

  2. Leclerc M, Morin J (2010) Design and synthesis of conjugated polymers. Wiley, ISBN 9783527629794

  3. Nalwa H (2000) Handbook of advanced electronic and photonic materials and devices. Academic Press, ISBN 9780125137454

  4. Kürti J, Surján P, Kertész M, Frapper G (1993) Synth Met 57:4338

    Article  Google Scholar 

  5. Surján PR, Németh K (1993) Synth Met 57:4260

    Article  Google Scholar 

  6. Yang S, Kertesz M (2007) Macromolecules 40:6740

    Article  CAS  Google Scholar 

  7. Kertesz M, Cui C (1992) In: Electronic properties of polymers. Springer, New York, pp 397–400

  8. Terdik JZ, Németh K, Harkay KC, Terry JH Jr, Spentzouris L, Velázquez D, Rosenberg R, Srajer G (2012) Phys Rev B 86:035142

    Article  Google Scholar 

  9. Pintschovius L (1978) Colloid Polym Sci 256:883

    Article  CAS  Google Scholar 

  10. Burt FP (1910) J Chem Soc Trans 97:1171

    Article  CAS  Google Scholar 

  11. Walatka V, Labes M, Perlstein JH (1973) Phys Rev Lett 31:1139

    Article  CAS  Google Scholar 

  12. Greene R, Street GB, Suter L (1975) Phys Rev Lett 34:577

    Article  CAS  Google Scholar 

  13. Chiang C, Fincher C, Park Y, Heeger A, Shirakawa H, Louis E, Gau S, MacDiarmid AG (1977) Phys Rev Lett 39:1098

    Article  CAS  Google Scholar 

  14. Chiang C, Druy M, Gau S, Heeger A, Louis E, MacDiarmid AG, Park Y, Shirakawa H (1978) J Am Chem Soc 100:1013

    Article  CAS  Google Scholar 

  15. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun 16:578–580

    Article  Google Scholar 

  16. Fincher C Jr, Ozaki M, Tanaka M, Peebles D, Lauchlan L, Heeger A, MacDiarmid A (1979) Phys Rev B 20:1589

    Article  CAS  Google Scholar 

  17. Peierls R (1955) Quantum theory of solids. International series of monographs on physics. Clarendon Press, Oxford

  18. Jahn HA, Teller E (1937) Proceedings of the Royal Society of London. Series A, mathematical and physical sciences, pp 220–235

  19. Toombs GA (1978) Phys Rep 40:181

    Article  Google Scholar 

  20. Aissing G, Monkhorst HJ, Hu C (1993) Int J Quantum Chem 48:245

    Article  Google Scholar 

  21. Yannoni C, Clarke T (1983) Phys Rev Lett 51:1191

    Article  CAS  Google Scholar 

  22. Müller H, Svensson S, Birch J, Kvick Å (1997) Inorg Chem 36:1488

    Article  Google Scholar 

  23. Keller H (1977) Chemistry and physics of one-dimensional metals, NATO ASI series. Series B: physics. Springer, ISBN 9780306357251

  24. Kertész M, Koller J, Ažman A, Suhai S (1975) Phys Lett A 55:107

    Article  Google Scholar 

  25. Dovesi R, Pisani C, Roetti C, Saunders V (1984) J Chem Phys 81:2839

    Article  CAS  Google Scholar 

  26. Causa M, Dovesi R, Pisani C, Roetti C, Saunders V (1988) J Chem Phys 88:3196

    Article  CAS  Google Scholar 

  27. Németh K, Unni AK, Kalnmals C, Segre CU, Kaduk J, Bloom ID, Maroni VA (2015) RSC Adv 5:55986

    Article  Google Scholar 

  28. Ruschewitz U (2006) Zeitschrift für anorganische und allgemeine Chemie 632:705

    Article  CAS  Google Scholar 

  29. Radchenko S, Petrov A (1989) Russ Chem Rev 58:948

    Article  Google Scholar 

  30. Gedridge RW Jr, Brandsma L, Nissan RA, Verkruijsse HD, Harder S, De Jong RL, O’Connor CJ (1992) Organometallics 11:418

    Article  CAS  Google Scholar 

  31. Wiberg E, Wiberg N (2001) Inorganic chemistry. Academic Press, ISBN 9780123526519

  32. Balamurugan B, Mehta B, Shivaprasad S (2003) Appl Phys Lett 82:115

    Article  CAS  Google Scholar 

  33. Judai K, Nishijo J, Nishi N (2006) Adv Mater 18:2842

    Article  CAS  Google Scholar 

  34. Brandsma L, Heus-Kloos Y, van der Heiden R, Verkruijsse H (1988) Preparative acetylenic chemistry. Elsevier, ISBN 9780444429605

  35. Brandsma L (2003) Best synthetic methods: acetylenes, allenes and cumulenes: acetylenes, allenes and cumulenes. Best synthetic methods. Elsevier Science, ISBN 9780080542201

  36. Stang P, Diederich F (2008) Modern acetylene chemistry. Wiley, ISBN 9783527615261

  37. Hlavatỳ J, Kavan L (1998) Die Angewandte Makromolekulare Chemie 254:75

    Article  Google Scholar 

  38. Cataldo F (1997) Polym Int 44:191

    Article  CAS  Google Scholar 

  39. Cataldo F (1998) Eur J Solid State Inorg Chem 35:293

    Article  CAS  Google Scholar 

  40. Cataldo F, Capitani D (1999) Mater Chem Phys 59:225

    Article  CAS  Google Scholar 

  41. Cataldo F (2005) Polyynes: synthesis, properties, and applications. Taylor & Francis, ISBN 9781420027587

  42. Campbell RW (1975) P-phenylene sulfide polymers. US patent 3,919,177

  43. Duan B, Wang W, Wang A, Yuan K, Yu Z, Zhao H, Qiu J, Yang Y (2013) J Mater Chem A 1:13261

    Article  CAS  Google Scholar 

  44. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I et al (2009) J Phys Condens Matter 21:395502 (19pp). http://www.quantum-espresso.org

  45. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Phys Rev Lett 100:136406

    Article  Google Scholar 

  46. Sim G, Sutton L (1975) Molecular structure by diffraction methods. Nuclear magnetic resonance. Royal Society of Chemistry, ISBN 9780851865270

  47. Okada M, Tanaka K, Takata A, Yamabe T (1993) Synth Metals 59:223

    Article  CAS  Google Scholar 

  48. Akahama Y, Kawamura H, Häusermann D, Hanfland M, Shimomura O (1995) Phys Rev Lett 74:4690

    Article  CAS  Google Scholar 

  49. Iota V, Yoo C, Cynn H (1999) Science 283:1510

    Article  CAS  Google Scholar 

  50. Goh M, Matsushita S, Akagi K (2010) Chem Soc Rev 39:2466

    Article  CAS  Google Scholar 

  51. Surján PR, Udvardi L, Németh K (1994) J Mol Struct (Thoechem) 311:55

    Article  Google Scholar 

  52. Surján P, Németh K (1994) Solid State Commun 92:407

    Article  Google Scholar 

  53. Surján P, Németh K, Bennati M, Grupp A, Mehring M (1996) Chem Phys Lett 251:115

    Article  Google Scholar 

  54. Bennati M, Németh K, Surján P, Mehring M (1996) J Chem Phys 105:4441

    Article  CAS  Google Scholar 

  55. Németh K (2014a) Int J Quantum Chem 114:1031

    Google Scholar 

  56. Németh K (2014b) J Chem Phys 141:054711

    Article  Google Scholar 

  57. Nemeth K (2015) Functionalized boron nitride materials as electroactive species in electrochemical energy storage devices, patent pending, WO/2015/006161

  58. Setyawan W, Curtarolo S (2010) Comput Mater Sci 49:299

    Article  Google Scholar 

Download references

Acknowledgments

The author of the present study gratefully acknowledges countless valuable discussions and an enduring support and mentorship to Professor Péter Surján, to whose 60th birthday this Festschrift is dedicated. Károly Németh started research on the field of theoretical design of small band gap conjugated polymers in 1990 as an undergraduate student in a collaborative research involving Professors Péter Surján and Jenő Kürti at Eötvös University, Budapest, Hungary [5]. This research has later been extended to various other topics of conjugated \(\pi \)-electron systems during the doctoral student period of the present author under the supervision of Professor Péter Surján, between 1992 and 1996 [5154]. Recently, the present author’s research is centered around the theoretical design of functional materials for efficient electrochemical energy storage devices (batteries), especially those derived from conjugated \(\pi \)-electron systems, such as functionalized boron nitrides [5557], still benefitting from the conjugated \(\pi \)-electron system studies conducted two decades ago with Professor Péter Surján. The author also thanks Prof. J. Kürti (Eötvös University, Budapest, Hungary) for helpful discussions in the subject of the present work and NERSC (U.S. DOE DE-AC02-05CH11231) for the use of computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly Németh.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RES 237 kb)

Supplementary material 2 (INP 2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Németh, K. Metallic and semiconducting 1D conjugated polymers based on –S–C\(\equiv \)C– repeating units in poly(sulfur acetylide). Theor Chem Acc 134, 109 (2015). https://doi.org/10.1007/s00214-015-1704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1704-9

Keywords

Navigation