Log in

Hermitian “chemical” Hamiltonian: an alternative ab initio method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Some previous results of the present author are combined in order to develop a Hermitian version of the “Chemical Hamiltonian Approach.” In this framework the second quantized Born–Oppenheimer Hamiltonian is decomposed into one- and two-center components, if some finite basis corrections are omitted. (No changes are introduced into the one- and two-center integrals, while projective expansions are used for the three- and four-center ones, which become exact only in the limit of complete basis sets.) The total molecular energy calculated with this Hamiltonian can then presented as a sum of the intraatomic and diatomic energy terms which were introduced in our previous “chemical energy component analysis” scheme. The corresponding modified Hartree–Fock–Roothaan equations are also derived; they do not contain any three- and four-center integrals, while the non-empirical character of the theory is conserved. This scheme may be useful also as a “layer” in approaches like ONIOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayer I (1983) Int J Quantum Chem 23:341

    Article  CAS  Google Scholar 

  2. Ruedenberg K (1951) J Chem Phys 19:1433

    Article  Google Scholar 

  3. Mayer I (1998) Int J Quantum Chem 70:41

    Article  CAS  Google Scholar 

  4. Salvador P, Asturiol D, Mayer I (2006) J Comput Chem 27:1505

    Article  CAS  Google Scholar 

  5. Mayer I (1983) Chem Phys Lett 97:270

    Article  CAS  Google Scholar 

  6. Mayer I (2007) J Comput Chem 28:204

    Article  CAS  Google Scholar 

  7. Mayer I (2012) Chem Phys Lett 544:83

    Article  CAS  Google Scholar 

  8. Programs BORDER, NEWBORDER etc. http://occam.ttk.mta.hu

  9. Mayer I (2000) Chem Phys Lett 332:381

    Article  CAS  Google Scholar 

  10. Program APOST. http://occam.ttk.mta.hu

  11. Mayer I (2006) Phys Chem Chem Phys 8:4630

    Article  CAS  Google Scholar 

  12. Mayer I (2007) Faraday Discuss 135:439

    Article  CAS  Google Scholar 

  13. Mayer I (2012) Phys Chem Chem Phys 14:337

    Article  CAS  Google Scholar 

  14. Programs APEX4, ENPART, NEWENPART. http://occam.ttk.mta.hu

  15. Maseras F, Morokuma K (1995) J Comput Chem 16:1170

    Article  CAS  Google Scholar 

  16. Longuet-Higgins HC (1966) In: Löwdin P-O (ed) Quantum theory of atoms, molecules and the solid state. Academic Press, New York, p 105

    Google Scholar 

  17. Surján PR (1989) Second quantized approach to quantum chemistry. Springer, Berlin

    Book  Google Scholar 

  18. Hamza A, Mayer I (2003) Theor Chem Acc 109:91

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mayer.

Additional information

Dedicated to the 60th birthday of Professor Péter R. Surján.

Published as part of the special collection of articles “Festschrift in honour of Péter R. Surjan.”

Appendix: Derivation of Eq. (45)

Appendix: Derivation of Eq. (45)

When considering the integral approximations, we should stick to the [12|12] convention for the integrals permitting to distinguish the terms originating from the “bra”-s and “ket”-s, respectively; in the final formulae we have turned to the (11|22) convention more convenient in programming.

Systematizing the terms according to the centers of the orbitals involved, for the one-center matrix elements of matrix \({\mathbf{F}}^\sigma\) one has

$$\begin{aligned} \left. F^{\sigma }_{\mu \nu }\right| _{\mu ,\nu \in A} &= h_{\mu \nu } + \sum _{\rho ,\tau \in A}\left( D_{\tau \rho }[\mu \rho |\nu \tau ] - P^\sigma _{\tau \rho }[\mu \rho |\tau \nu ]\right)\\ &\quad + \mathop {\sum _B}_{B\ne A}\sum _{\rho \in B}\sum _{\tau \in A} \left( D_{\tau \rho }[\mu \rho |\nu \tau ] - P^\sigma _{\tau \rho }[\mu \rho |\tau \nu ]\right) \\ &\quad + \mathop {\sum _B}_{B\ne A}\sum _{\tau \in B}\sum _{\rho \in A} \left( D_{\tau \rho }[\mu \rho |\nu \tau ] - P^\sigma _{\tau \rho }[\mu \rho |\tau \nu ]\right) \\ &\quad+\mathop {\sum _{B,C}}_{B,C\ne A}\sum _{\rho \in B}\sum _{\tau \in C} \left( D_{\tau \rho }[\mu \rho |\nu \tau ] - P^\sigma _{\tau \rho }[\mu \rho |\tau \nu ]\right) \end{aligned}$$
(48)

Only the last sum of Eq. (48) contain three- or four-center integrals that need to be approximated, therefore we shall consider its terms in detail. At first, we substitute the approximations (6) in the first term of that sum:

$$\begin{aligned} \mathop {\sum _{B,C}}_{B,C\ne A}\sum _{\rho \in B}\sum _{\tau \in C} D_{\tau \rho }[\mu \rho |\nu \tau] \Longrightarrow \mathop {\sum _{B,C}}_{B,C\ne A}\sum _{\rho \in B}\sum _{\tau \in C} D_{\tau \rho }{{\frac{1}{2}}}\left( \sum _{\lambda ,\eta \in AC}A^{AC}_{\mu \lambda } A^{AC}_{\rho \eta }[\lambda \eta |\nu \tau ] + \sum _{\lambda ,\eta \in AB} A^{AB\dagger }_{\lambda \nu }A^{AB\dagger }_{\eta \tau } [\mu \rho |\lambda \eta ]\right) \end{aligned}$$
(49)

Both subscripts of the coefficient \(A^{AC}_{\mu \lambda }\) in the first term are belonging to the diatomic fragment AC; as noted above, the intra-fragment blocks of the matrices \({\mathbf{A}}\) are unit-matrices; therefore, this coefficient reduces to the Kronecker delta \(\delta _{\mu \lambda }\). Similarly, in the second term \(A^{AB\dagger }_{\lambda \nu }=\delta _{\lambda \nu }\). Utilizing this we get:

$$\begin{aligned} \mathop {\sum _{B,C}}_{B,C\ne A}\sum _{\rho \in B}\sum _{\tau \in C} D_{\tau \rho }[\mu \rho |\nu \tau ] &\Longrightarrow \mathop {\sum _{B,C}}_{B,C\ne A}\sum _{\rho \in B}\sum _{\tau \in C} D_{\tau \rho }\; {{\frac{1}{2}}}\left( \sum _{\eta \in AC} A^{AC}_{\rho \eta }[\mu \eta |\nu \tau ]\right. \\ & \quad\quad \left. + \sum _{\eta \in AB}A^{AB\dagger }_{\eta \tau } [\mu \rho |\nu \eta ]\right) . \end{aligned}$$
(50)

In the followings we shall assume that we use real basis orbitals and orbital coefficients—as it is usually the case in the practice. Then \(D_{\tau \rho }=D_{\rho \tau }\), \(A^{AB\dagger }_{\eta \tau }= A^{AB}_{\tau \eta }\), \([\mu \rho |\lambda \eta ]=[\lambda \eta |\mu \rho ]\), and interchanging some summation indices we can conclude that the two sums are equal. Thus we have in the real case

$$\mathop {\sum _{B,C}}_{B,C\ne A}\sum _{\rho \in B}\sum _{\tau \in C} D_{\tau \rho }[\mu \rho |\nu \tau ] \Longrightarrow \mathop {\sum _{B,C}}_{B,C\ne A}\sum _{\rho \in B}\sum _{\tau \in C} D_{\tau \rho }\sum _{\eta \in AC} A^{AC}_{\rho \eta }[\mu \eta |\nu \tau ] .$$
(51)

The summation over \(\rho \in B;\ B\ne A\) in the right-hand side of Eq. (51) means that ρ runs over all the orbital indices, except those assigned to atom A; we may add and subtract the sum for the case \(\rho \in A\):

$$\begin{aligned} \mathop {\sum _{B,C}}_{B,C\ne A}\sum _{\rho \in B}\sum _{\tau \in C} D_{\tau \rho }[\mu \rho |\nu \tau ]&\Longrightarrow \mathop {\sum _{C}}_{C\ne A}\sum _{\rho }\sum _{\tau \in C} D_{\tau \rho }\sum _{\eta \in AC} A^{AC}_{\rho \eta }[\mu \eta |\nu \tau ] \\ &\quad -\mathop {\sum _{C}}_{C\ne A}\sum _{\rho \in A}\sum _{\tau \in C} D_{\tau \rho }\sum _{\eta \in AC}A^{AC}_{\rho \eta }[\mu \eta |\nu \tau] . \end{aligned}$$
(52)

In the first term on the right-hand side, we can sum over ρ to get the “projected density matrix element” \(B^{AC}_{\tau \eta }\), while in the second term the coefficient \(A^{AC}_{\rho \eta }\) again reduces to the Kronecker delta \(\delta _{\rho \eta }\). Thus we get, changing the summation index C to B in the right-hand side:

$$\begin{aligned} \mathop {\sum _{B,C}}_{B,C\ne A}\sum _{\rho \in B}\sum _{\tau \in C} D_{\tau \rho }[\mu \rho |\nu \tau ] &\Longrightarrow \mathop {\sum _{B}}_{B\ne A}\sum _{\tau \in B} \sum _{\eta \in AB} B^{AB}_{\tau \eta }[\mu \eta |\nu \tau ] \\ & \quad -\mathop {\sum _{B}}_{B\ne A}\sum _{\rho \in A}\sum _{\tau \in B} D_{\tau \rho }[\mu \rho |\nu \tau].\end{aligned}$$
(53)

The second sum just cancels the respective term in the third line of Eq. (48).

The second (exchange) term in the fourth line of Eq. (48) transforms analogously. However, in that case the two terms are not equal, as were in Eq. (50), and there is no full canceling of the second term in the third line of Eq. (48); instead the half of the respective terms in both second and third lines is canceled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, I. Hermitian “chemical” Hamiltonian: an alternative ab initio method. Theor Chem Acc 134, 86 (2015). https://doi.org/10.1007/s00214-015-1682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1682-y

Keywords

Navigation