Log in

Unconventional bond functions for quantum chemical calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

New types of bond function (BF) basis sets are proposed and tested for quantum chemical applications. First, BF basis sets constituted of conventional Gaussian-type orbitals (GTO) are considered. Both the exponents and the positions of the BFs are optimized, but, in contrast to previous studies, the position of each BF shell is varied separately. Second, new types of basis functions, the general ellipsoidal Gaussian-type orbitals (EGTOs), are proposed for quantum chemical applications. The EGTOs are distorted spherical GTOs and, as such, are expected to be well suited for describing the polarized charge densities in molecular environments. EGTOs can be used either as atom-centered (AC) basis functions or as BFs. In this study, the latter possibility is explored, and BF basis sets including EGTOs are optimized and compared to those containing only conventional GTO BFs. The performance of the developed GTO and EGTO BF basis sets is assessed for Hartree–Fock and density functional calculations against conventional AC GTO basis sets. Our results show that using GTO BF basis sets, the results are significantly improved, while the number of the basis functions can be decreased by about 10 %, which is not dramatic; however, the average angular momentum quantum number in the BF sets is significantly lower. The accuracy of the computed energies can be further increased by about 15 % if EGTO BFs are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See also Ref. [56] as well as http://www.mrcc.hu/.

References

  1. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  2. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  3. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  4. Dill JD, Pople JA (1975) J Chem Phys 62:2921

    Article  CAS  Google Scholar 

  5. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  6. Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939

    Article  CAS  Google Scholar 

  7. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  Google Scholar 

  8. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829

    Article  Google Scholar 

  9. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  10. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  11. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  12. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  13. Peterson KA, Dunning TH Jr (2002) J Chem Phys 117:10548

    Article  CAS  Google Scholar 

  14. Boys SF (1950) Proc R Soc Lond Ser A 200:542

    Article  CAS  Google Scholar 

  15. Davidson ER, Feller D (1986) Chem Rev 86:681

    Article  CAS  Google Scholar 

  16. Dunning TH, Peterson KA, Woon DE (1998) In: Schleyer PR, Jorgensen WL, Schaefer III HF, Schreiner PR, Thiel W (eds) Encyclopedia of computational chemistry. Wiley, New York, p 88

  17. Jensen F (2013) Wiley Interdiscip Rev Comput Mol Sci 3:273

    Article  CAS  Google Scholar 

  18. Preuss H (1965) Z Naturforsch A 20:21

    Google Scholar 

  19. Frost AA (1967) J Chem Phys 47:3707

    Article  CAS  Google Scholar 

  20. Huber H (1979) Chem Phys Lett 62:95

    Article  CAS  Google Scholar 

  21. Huber H (1980) Chem Phys Lett 70:353

    Article  CAS  Google Scholar 

  22. Huber H (1980) Theor Chim Acta 55:117

    Article  CAS  Google Scholar 

  23. Huber H (1981) J Mol Struct (Theochem) 76:277

    Article  Google Scholar 

  24. Helgaker T, Almlöf J (1988) J Chem Phys 89:4889

    Article  CAS  Google Scholar 

  25. Rothenberg S, Schaefer HF III (1971) J Chem Phys 54:2764

    Article  CAS  Google Scholar 

  26. Neisius D, Verhaegen G (1979) Chem Phys Lett 66:358

    Article  CAS  Google Scholar 

  27. Neisius D, Verhaegen G (1981) Chem Phys Lett 78:147

    Article  CAS  Google Scholar 

  28. Martin JML, Francois JP, Gijbels R (1989) J Comput Chem 10:152

    Article  CAS  Google Scholar 

  29. Bauschlicher CW Jr, Partridge H (1998) J Chem Phys 109:4707

    Article  CAS  Google Scholar 

  30. Bruun J, Helgaker T, Jensen F (2004) Mol Phys 102:2559

    Article  CAS  Google Scholar 

  31. Matio E, Kobus J, Styszyński J (2006) Chem Phys 321:277

    Article  Google Scholar 

  32. Browne JC, Poshusta RD (1962) J Chem Phys 36:1933

    Article  CAS  Google Scholar 

  33. Katriel J (1969) Chem Phys Lett 3:624

    Article  CAS  Google Scholar 

  34. Katriel J, Adam G (1970) J Chem Phys 53:302

    Article  CAS  Google Scholar 

  35. Bishop DM, Leclerc JC (1972) Mol Phys 24:979

    Article  CAS  Google Scholar 

  36. Cohen D, Basch H (1976) Theor Chim Acta 42:199

    Article  CAS  Google Scholar 

  37. Cohen D, Basch H (1978) Theor Chim Acta 50:263

    Article  CAS  Google Scholar 

  38. Szalay Z, Surján PR (2008) J Math Chem 43:227

    Article  CAS  Google Scholar 

  39. Preuss VH (1956) Z Naturforsch 11:823

    Google Scholar 

  40. Tasi G, Császár AG (2007) Chem Phys Lett 438:139

    Article  CAS  Google Scholar 

  41. Nelder JA, Mead R (1965) Comput J 7:308

    Article  Google Scholar 

  42. Kállay M, Rolik Z, Csontos J, Ladjánszki I, Szegedy L, Ladóczki B, Samu G MRCC, a quantum chemical program suite

  43. Helgaker T, Gauss J, Jørgensen P, Olsen J (1997) J Chem Phys 106:6430

    Article  CAS  Google Scholar 

  44. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  45. Iijima T, Jimbo H, Taguchi M (1986) J Mol Struct 144:381

    Article  CAS  Google Scholar 

  46. Lees RM, Baker JG (1968) J Phys Chem 48:5299

    Article  CAS  Google Scholar 

  47. Harmony MD, Laurie VW, Kuczkowski RL, Schwendeman RH, Ramsay DA, Lovas FJ, Lafferty WJ, Maki AG (1979) J Phys Chem Ref Data 8:619

    Article  CAS  Google Scholar 

  48. Gurvich LV, Veyts IV, Alock CB (1992) Thermodynamic properties of individual substances, 4th edn. Hemisphere, New York

    Google Scholar 

  49. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  50. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  51. Zhao Y, Truhlar DG (2006) Theor Chem Acc 120:215

    Article  Google Scholar 

  52. Dunning TH Jr (1970) J Chem Phys 53:2829

    Article  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian, Wallingford

  54. Becke AD (1988) J Chem Phys 88:2547

    Article  CAS  Google Scholar 

  55. Takatsuka A, Ten-no S, Hackbusch W (2008) J Chem Phys 129:044112

    Article  Google Scholar 

  56. Rolik Z, Szegedy L, Ladjánszki I, Ladóczki B, Kállay M (2013) J Chem Phys 139:094105

    Article  Google Scholar 

Download references

Acknowledgments

M.K. expresses his gratitude to Professor Surján for mentoring him at the early stages of his career and for continuous support. J.C. acknowledges the financial support of the János Bolyai fellowship of the Hungarian Academy of Sciences. The authors gratefully acknowledge the computing time granted on the Hungarian HPC Infrastructure at NIIF Institute, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihály Kállay.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan.”

This paper is dedicated to Professor Péter R. Surján on the happy occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mester, D., Csontos, J. & Kállay, M. Unconventional bond functions for quantum chemical calculations. Theor Chem Acc 134, 74 (2015). https://doi.org/10.1007/s00214-015-1670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1670-2

Keywords

Navigation