Log in

Variational analysis of the planar \(L_p\) dual Minkowski problem

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The \(L_p\) dual curvature measures were recently introduced by Lutwak et al. (Adv Math 329:85-132, 2018) to unify the classical theory of mixed volumes and the newer theory of dual mixed volumes of convex bodies. However, the associated \(L_p\) dual Minkowski problems for many important special cases remain open problems. They are analytically equivalent to a class of nonlinear problems with indices p and q. In most previous studies, conventional geometric inequalities and Aleksandrov’s variational formula for convex bodies were used to study these problems. In this paper, by using a new investigation method via directly studying the nonlinear problems characterizing the planar \(L_p\) dual Minkowski problem in Sobolev spaces, several sharp functional inequalities associated with the \(L_p\) dual curvature measures are established to generalize the classical inequalities, such as the Wirtinger’s inequality and the Blaschke-Santaló inequality. Based on these new sharp functional inequalities, various existence results for the planar \(L_p\) dual Minkowski problem are obtained for integrable data and general \(q\ge 2\). Compared with the uniqueness results of \(\pi -\)periodic solutions for \(p=0\) and \(q=2\) (in Dohmen and Giga, Proc Japan Acad Ser A Math Sci, 1994; Andrews, J Amer Math Soc, 2003), the non-uniqueness and multiple \(\pi -\)periodic solutions are also obtained in this paper for \(p=0\) and all \(q>4\) through variational analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

This manuscript has no associated data.

References

  1. Ai, J., Chou, K.S., Wei, J.: Self-similar solutions for the anisotropic affine curve shortening problem. Calc. Var. Partial Differ. Equ. 13(3), 311–337 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Andrews, B.: Classification of limiting shapes for isotropic curve flows. J. Amer. Math. Soc. 16, 443–459 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Böröczky, K.J., Henk, M., Pollehn, H.: Subspace concentration of dual curvature measures of symmetric convex bodies. J. Differ. Geom. 109, 411–429 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Böröczky, K.J., Fodor, F.: The \(L_p\) dual Minkowski problem for \(p>1\) and \(q>0\). J. Differ. Equ. 266, 7980–8033 (2019)

    MATH  Google Scholar 

  5. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn-Minkowski inequality. Adv. Math. 231, 1974–1997 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The logarithmic Minkowski problem. J. Amer. Math. Soc. 26, 831–852 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G., Zhao, Y.: The dual Minkowski problem for symmetric convex bodies. Adv. Math. 356, 106805 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Chen, C., Huang, Y., Zhao, Y.: Smooth solutions to the \(L_p\) dual Minkowski problem. Math. Ann. 373, 953–976 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Chen, H.D., Chen, S., Li, Q.R.: Variations of a class of Monge-Ampère type functionals and their applications. Anal. PDE 14(3), 689–716 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Chen, H.D., Li, Q.R.: The \(L_ p\) dual Minkowski problem and related parabolic flows. J. Funct. Anal. 281(8), 109139 (2021)

    MATH  Google Scholar 

  11. Chen, S., Li, Q.R.: On the planar dual Minkowski problem. Adv. Math. 333, 87–117 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Chen, S., Li, Q.R., Zhu, G.: The Logarithmic Minkowski problem for non-symmetric measures. Trans. Amer. Math. 371, 2623–2641 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Chen, W.: \(L_p\) Minkowski problem with not necessarily positive data. Adv. Math. 201, 77–89 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Chen, W., Howard, R., Lutwak, E., Yang, D., Zhang, G.: A generalized affine isoperimetric inequality. J. Geom. Anal. 14, 597–612 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Chou, K.S., Wang, X.J.: The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Dohmen, C., Giga, Y.: Selfsimilar shrinking curves for anisotropic curvature flow equations. Proc. Japan Acad. Ser. A Math. Sci. 70, 252–255 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Dou, J., Zhu, M.: The two dimensional \(L_p\) Minkowski problem and nonlinear equations with negative exponents. Adv. Math. 230, 1209–1221 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Gage, M.E.: Evolving plane curves by curvature in relative geometries. Duke Math. J. 72, 441–466 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Henk, M., Pollehn, H.: Necessary subspace concentration conditions for the even dual Minkowski problem. Adv. Math. 323, 114–141 (2018)

    MathSciNet  MATH  Google Scholar 

  20. He, Y., Li, Q. R., Wang, X. J.: Multiple solutions of the \(L_p\)-Minkowski problem, Calc. Var. Partial Differ Equ 55, Art. 117 (2016)

  21. Huang, Y., Jiang, Y.: Variational characterization to the planar dual Minkowski problem. J. Funct. Anal. 277, 2209–2236 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Huang, Y., Liu, J., Xu, L.: On the uniqueness of \(L_p\)-Minkowski problems: the constant \(p\)-curvature case in \({\mathbb{R}}^3\). Adv. Math. 281, 906–927 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Huang, Y., Lu, Q.: On the regularity of the \(L_p\) Minkowski problem. Adv. in Appl. Math. 50, 268–280 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Huang, Y., Lutwak, E., Yang, D., Zhang, G.: Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math. 216, 325–388 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Huang, Y., Zhao, Y.: On the \(L_p\) dual Minkowski problem. Adv. Math. 332, 57–84 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Jian, H., Lu, J., Wang, X.J.: Nonuniqueness of solutions to the \(L_p\)-Minkowski problem. Adv. Math. 281, 845–856 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Jiang, M.: Remarks on the 2-dimensional \(L_p\)-Minkowski problem. Adv. Nonlinear Stud. 10, 297–313 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Jiang, M., Wang, L., Wei, J.: \(2\pi \)-periodic self-similar solutions for the anisotropic affine curve shortening problem. Calc. Var. Partial Differ. Equ. 41, 535–565 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Jiang, M., Wei, J.: \(2\pi \)-periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete Contin. Dyn. Syst. 36, 785–803 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Jiang, Y., Wang, Z., Wu, Y.: Multiple solutions of the planar \(L_p\) dual Minkowski problem. Calc. Var. Partial Differ. Equ. 60, Art. 89 (2021)

  31. Jiang, Y., Wu, Y.: On the 2-dimensional dual Minkowski problem. J. Differ. Equ. 263, 3230–3243 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Li, Q.R., Liu, J.K., Lu, J.: Nonuniqueness of Solutions to the \(L_p\) Dual Minkowski Problem. Int. Math. Res. Not. (2021). https://doi.org/10.1093/imrn/rnab013

  33. Li, Q.R., Sheng, W., Wang, X.J.: Flow by gauss curvature to the Alekesandrov and dual Minkowski problems. J. Eur. Math. Soc. (JEMS) 22, 893–923 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Lu, J., Wang, X.J.: Rotationally symmetric solutions to the \(L_p\)-Minkowski problem. J. Differ. Equ. 254, 983–1005 (2013)

    MATH  Google Scholar 

  35. Lutwak, E.: The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    MathSciNet  MATH  Google Scholar 

  36. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) dual curvature measures. Adv. Math. 329, 85–132 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Ni, Y., Zhu, M.: One dimensional conformal metric flow. Adv. Math. 218, 983–1011 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Ni, Y., Zhu, M.: Steady states for one dimensional curvature flows. Commun. Contemp. Math. 10, 155–179 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Sheng, W., **a, S.: The planar \(L_p\) dual Minkowski problem. Sci. China Math. 64(7), 1637–1648 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Stancu, A.: The discrete planar L0-Minkowski problem. Adv. Math. 167(1), 160C174 (2002)

    Google Scholar 

  41. Stancu, A.: On the number of solutions to the discrete two-dimensional \(L_0\)-Minkowski problem. Adv. Math. 180(1), 290–323 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Sun, Y., Long, Y.: The planar Orlicz Minkowski problem in the \(L^1\)-sense. Adv. Math. 281, 1364–1383 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Umanskiy, V.: On solvability of two-dimensional \(L_p\)-Minkowski problem. Adv. Math. 180, 176–186 (2003)

    MathSciNet  MATH  Google Scholar 

  44. Yagisita, H.: Non-uniqueness of self-similar Shrinking curves for an anisotropic curvature flow. Calc. Var. Partial Differ. Equ. 26, 49–55 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Zhao, Y.: Existence of solutions to the even dual Minkowski problem. J. Differ. Geom. 110, 543–572 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Zhao, Y.: The dual Minkowski problem for negative indices. Calc. Var. Partial Differ. Equ. 56, Art. 18 (2017)

  47. Zhu, G.: The logarithmic Minkowski problem for polytopes. Adv. Math. 262, 909–931 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Zhu, G.: The \(L_p\) Minkowski problem for polytopes for \(0<p<1\). J. Funct. Anal. 269, 1070–1094 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC under grants, No.12071482, 11871386 and 11931012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng** Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Communicated by Yoshikazu Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 6.1

Let \(p<0\), and \(\{u_n\}\) is a sequence of positive continuous functions and \(\lim \limits _{n\rightarrow +\infty }u_n(\theta )=|\sin (\theta )|\) uniformly on \({\mathbb {S}}\). Let \(\varepsilon _n=\min \limits _{\theta }u_n(\theta )>0\) for each \(n\in {\mathbb {N}}\). As \(\varepsilon _n\rightarrow 0^+\), we have

$$\begin{aligned} \frac{3^{p}}{-2(p+1)}\varepsilon _n^{p+1}\le & {} \frac{1}{4}\int _{{\mathbb {S}}}{u_n^{p}(\theta )}d\theta \nonumber \\\le & {} \frac{3^{-p}\pi }{-2(p+1)}\varepsilon _n^{p+1} \text {holds for } p\in (-\infty ,-1); \end{aligned}$$
(6.1)
$$\begin{aligned} \frac{1}{3}\ln \left( \frac{\pi /2+\varepsilon _n}{\varepsilon _n}\right)\le & {} \frac{1}{4}\int _{{\mathbb {S}}}{u_n^{p}(\theta )}d\theta \le \frac{3\pi }{2}\ln \left( \frac{1+\varepsilon _n}{\varepsilon _n}\right) \text { holds for } p=-1;\qquad \end{aligned}$$
(6.2)

and

$$\begin{aligned} \frac{3^p}{2(p+1)}(\pi /2+\varepsilon _n)^{p+1}\le & {} \frac{1}{4}\int _{{\mathbb {S}}}{u_n^{p}(\theta )}d\theta \nonumber \\\le & {} \frac{ 3^{-p}\pi }{2(p+1)}(1+\varepsilon _n)^{p+1}\text { holds for}p\in (-1,0). \end{aligned}$$
(6.3)

Proof

For large n, it follows from the assumption that

$$\begin{aligned} \frac{1}{3}\le \frac{u_n(\theta )}{|\sin (\theta )|+\varepsilon _n} =\frac{1}{|\sin (\theta )|/u_n(\theta )+\varepsilon _n/u_n(\theta )} \le 3, \text {for all }\theta \in {\mathbb {S}}. \end{aligned}$$

We get that \(\frac{|\sin (\theta )|+\varepsilon _n}{3}\le u_n(\theta )\le 3(|\sin (\theta )|+\varepsilon _n)\) for all \(\theta \in {\mathbb {S}}\) and large n. Since \(p<0\), we deduce that

$$\begin{aligned} {3^{p}} \int _{0}^{\pi /2}{(\sin (\theta )+\varepsilon _n)^{p}}d\theta \le \frac{1}{4}\int _{{\mathbb {S}}}{u_n^{p}(\theta )}d\theta \le {3^{-p}} \int _{0}^{\pi /2}{(\sin (\theta )+\varepsilon _n)^{p}}d\theta \qquad \end{aligned}$$
(6.4)

holds for large n. Noting that the inequality \(\frac{2}{\pi }\le \frac{\sin (\theta )}{\theta }<1\) holds for all \(\theta \in (0,\frac{\pi }{2}]\), we have

$$\begin{aligned} \int _{0}^{\pi /2}{(\theta +\varepsilon _n)^{p}}d\theta \le \int _{0}^{\pi /2}(\sin (\theta )+\varepsilon _n)^{p}d\theta \le \int _{0}^{\pi /2}{(2\theta /\pi +\varepsilon _n)^{p}}d\theta . \end{aligned}$$
(6.5)

And it is easy to get that

$$\begin{aligned} \int _{0}^{\pi /2}{(2\theta /\pi +\varepsilon _n)^{p}}d\theta =\left\{ \begin{array}{ll} \frac{\pi }{2(1+p)}\left( {(1+\varepsilon _n)^{p+1}}-{\varepsilon _n^{p+1}}\right) ,\ p\not =-1,\\ \frac{\pi }{2}\ln \frac{1+\varepsilon _n}{\varepsilon _n},\ p=-1. \end{array}\right. \end{aligned}$$
(6.6)

and

$$\begin{aligned} \int _{0}^{\pi /2}{(\theta +\varepsilon _n)^{p}}d\theta =\left\{ \begin{array}{ll} \frac{1}{1+p}\left( {(\pi /2+\varepsilon _n)^{p+1}}-{\varepsilon _n^{p+1}}\right) ,\ p\not =-1,\\ \ln \left( \frac{\pi /2+\varepsilon _n}{\varepsilon _n}\right) ,\ p=-1. \end{array}\right. \end{aligned}$$
(6.7)

Then, (6.1)-(6.3) follow from (6.4)-(6.7). \(\square \)

Lemma 6.2

Let \(q\ge 2\), \(f(\theta )=|\sin (\theta )|\), denote \(f_0(\theta )=|f(2\theta /3)|\) for \(\theta \in [0,3\pi /2]\); and \(f_0(\theta )=0\) for \(\theta \in (3\pi /2, 2\pi )\). Then \(f_0\in H^{1,q}({\mathbb {S}})\), and there exists \(\tau _0>0\) such that

$$\begin{aligned} \int _{{\mathbb {S}}}\left( f^q_0-\int _0^1\frac{(f_0^2+s^2f'^2_0)^{q/2}-f_0^q}{s^2}ds\right) d\theta =\tau _0>0. \end{aligned}$$

Proof

By Theorem 3.3, we get that

$$\begin{aligned} \int _{0}^{\pi } f^q d\theta -\int _{0}^{\pi }\int _0^1\frac{(f^2+s^2f'^2)^{q/2}-f^q}{s^2}dsd\theta =0. \end{aligned}$$
(6.8)

A simple calculation together with (6.8) gives that

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {S}}} f^q_0 d\theta -\int _{{\mathbb {S}}}\int _0^1\frac{(f_0^2+s^2f'^2_0)^{q/2}-f_0^q}{s^2}dsd\theta \\&\quad =\int _{0}^{3\pi /2} f^q_0 d\theta -\int _{0}^{3\pi /2}\int _0^1\frac{(f_0^2+s^2f'^2_0)^{q/2}-f_0^q}{s^2}dsd\theta \\&\quad =\frac{3}{2}\left( \int _{0}^{\pi } f^q d\theta -\int _{0}^{\pi }\int _0^1\frac{(f^2+4s^2f'^2/9)^{q/2}-f^q}{s^2}dsd\theta \right) \\&\quad =\frac{3}{2}\int _{0}^{\pi }\int _0^1\frac{(f^2+s^2f'^2)^{q/2}-(f^2+4s^2f'^2/9)^{q/2}}{s^2}dsd\theta :=\tau _0>0. \end{aligned} \end{aligned}$$

\(\square \)

Lemma 6.3

Let \(q>1\), \(t>0\), \(\tau \not =0\), \(\varsigma \in {\mathbb {R}}\), \(A_1(\tau ,\varsigma )\) and \(B_1(\tau ,\varsigma )\) be given by (2.14) with \(t=1\). Then,

$$\begin{aligned} \frac{\partial A_1(\tau ,\varsigma )}{\partial \tau }= & {} -(q-2)\tau \varsigma \int _0^1(\tau ^2+s^2\varsigma ^2)^{{q}/{2}-2}ds=\frac{\partial B_1(\tau ,\varsigma )}{\partial \varsigma }, \end{aligned}$$
(6.9)
$$\begin{aligned}&\frac{\partial A_1(\tau ,\varsigma )}{\partial \varsigma }=-(\tau ^2+\varsigma ^2)^{{q}/{2}-1}, \end{aligned}$$
(6.10)

and

$$\begin{aligned}&\frac{\partial B(\tau ,\varsigma )}{\partial \tau } =(q-1)|\tau |^{q-2}-\int _0^1\frac{(\tau ^2+s^2\varsigma ^2)^{{q}/{2}-1}-|\tau |^{q-2}}{s^2}ds\nonumber \\&\quad +(2-q)\tau ^2\int _0^1\frac{(\tau ^2+s^2\varsigma ^2)^{{q}/{2}-2}-|\tau |^{q-4}}{s^2}ds. \end{aligned}$$
(6.11)

If \(q\ge 2\), there exists \(C>0\) depending only on q such that

$$\begin{aligned} \left| \frac{\partial A_1(\tau ,\varsigma )}{\partial \tau }\right| + \left| \frac{\partial B_1(\tau ,\varsigma )}{\partial \varsigma }\right| \le C [\tau ^2+\varsigma ^2]^{\frac{q}{2}-1}. \end{aligned}$$
(6.12)

If \(1<q<2\), further assume that \(|\tau |>\alpha >0\), then there exists \(C>0\) depending only on q and \(\alpha \) such that

$$\begin{aligned} \left| \frac{\partial A_1(\tau ,\varsigma )}{\partial \tau }\right| + \left| \frac{\partial B_1(\tau ,\varsigma )}{\partial \varsigma }\right|= & {} 2(2-q)\left| \tau \varsigma \int _0^1(\tau ^2+s^2\varsigma ^2)^{{q}/{2}-2}ds\right| \nonumber \\\le & {} C|\tau |. \end{aligned}$$
(6.13)

Proof

By calculation directly, we get (6.9), (6.11) and

$$\begin{aligned} \frac{\partial A_1(\tau ,\varsigma )}{\partial \varsigma }= & {} -\int _0^1[\tau ^2+s^2\varsigma ^2]^{\frac{q}{2}-1}ds-(q-2)\varsigma ^2\int _0^1[\tau ^2+s^2\varsigma ^2]^{\frac{q}{2}-2}s^2ds\\= & {} -[\tau ^2+\varsigma ^2]^{\frac{q}{2}-1}. \end{aligned}$$

If \(2< q<4\), then \({q}/{2}-2\in (-1,0)\), and it follows from the Hölder inequality that \((\tau ^2+s^2\varsigma ^2)^{{q}/{2}-2}\le \left( {|\tau s\varsigma |}{2}\right) ^{{q}/{2}-2}\). For \(2< q<4\), we deduce that

$$\begin{aligned} \left| \tau \varsigma \int _0^1(\tau ^2+s^2\varsigma ^2)^{{q}/{2}-2}ds\right| \le \frac{1}{2}|2\tau \varsigma |^{{q}/{2}-1}\int _0^1\frac{1}{s^{2-q/2}}ds\le \frac{1}{q-2}(\tau ^2+\varsigma ^2)^{{q}/{2}-1}. \end{aligned}$$

If \(q\ge 4\), it is easy to see that

$$\begin{aligned} \left| \tau \varsigma \int _0^1[\tau ^2+s^2\varsigma ^2]^{\frac{q}{2}-2}ds\right| \le \left| \tau \varsigma \int _0^1(\tau ^2+\varsigma ^2)^{{q}/{2}-2}ds\right| \le \frac{1}{2}(\tau ^2+\varsigma ^2)^{{q}/{2}-1}. \end{aligned}$$

It follows from \(q>2\) that

$$\begin{aligned} \left| \tau \varsigma \int _0^1(\tau ^2+s^2\varsigma ^2)^{{q}/{2}-2}ds\right| \le \left( \frac{1}{q-2}+ \frac{1}{2}\right) (\tau ^2+\varsigma ^2)^{{q}/{2}-1}. \end{aligned}$$
(6.14)

By (6.14), there exists \(C>0\) depending on q such that

$$\begin{aligned} \begin{aligned} \left| \frac{\partial B_1(\tau ,\varsigma )}{\partial \varsigma }\right| =\left| \frac{\partial A_1(\tau ,\varsigma )}{\partial \tau }\right|&=\left| -(q-2)\tau \varsigma \int _0^1(\tau ^2+s^2\varsigma ^2)^{{q}/{2}-2}ds\right| \\&\le C (\tau ^2+\varsigma ^2)^{{q}/{2}-1}. \end{aligned} \end{aligned}$$

which is (6.12). If \(q=2\), it is trivial to get (6.12). For the case \(1<q<2\), we see that \(\int _0^{+\infty }(\tau ^2+s^2)^{{q}/{2}-2}ds<\int _0^{+\infty }(\alpha ^2+s^2)^{{q}/{2}-2}ds<+\infty \). It follows that (6.13) holds for some \(C>0\), which depends only on q and \(\alpha \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Wang, Z. & Wu, Y. Variational analysis of the planar \(L_p\) dual Minkowski problem. Math. Ann. 386, 1201–1235 (2023). https://doi.org/10.1007/s00208-022-02423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02423-7

Mathematics Subject Classification

Navigation