Log in

Gluing Methods for Vortex Dynamics in Euler Flows

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A classical problem for the two-dimensional Euler flow for an incompressible fluid confined to a smooth domain is that of finding regular solutions with highly concentrated vorticities around N moving vortices. The formal dynamic law for such objects was first derived in the 19th century by Kirkhoff and Routh. In this paper we devise a gluing approach for the construction of smooth N-vortex solutions. We capture in high precision the core of each vortex as a scaled finite mass solution of Liouville’s equation plus small, more regular terms. Gluing methods have been a powerful tool in geometric constructions by desingularization. We succeed in applying those ideas in this highly challenging setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baraket, S., Pacard, F.: Construction of singular limits for a semilinear elliptic equation in dimension 2. Calc. Var. 6, 1–38, 1998

    Article  MathSciNet  Google Scholar 

  2. Bartsch, T., Pistoia, A.: Critical points of the N-vortex Hamiltonian in bounded planar domains and steady state solutions of the incompressible Euler equations. SIAM J. Appl. Math. 75(2), 726–744, 2015

    Article  MathSciNet  Google Scholar 

  3. Bartsch, T., Dai, Q.: Periodic solutions of the N-vortex Hamiltonian system in planar domains. J. Differ. Equ. 260(3), 2275–2295, 2016

    Article  ADS  MathSciNet  Google Scholar 

  4. Bartsch, T.: Periodic solutions of singular first-order Hamiltonian systems of \(N\)-vortex type. Arch. Math. 107(4), 413–422, 2016

    Article  MathSciNet  Google Scholar 

  5. Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Invent. Math. 201(1), 97–157, 2015

    Article  ADS  MathSciNet  Google Scholar 

  6. Cao, D., Liu, Z., Wei, J.: Regularization of point vortices pairs for the Euler equation in dimension two. Arch. Ration. Mech. Anal. 212(1), 179–217, 2014

    Article  MathSciNet  Google Scholar 

  7. del Pino, M., Kowalczyk, M., Musso, M.: Singular limits in Liouville-type equations. Calc. Var. Partial Differ. Equ. 24, 47–81, 2005

    Article  MathSciNet  Google Scholar 

  8. De Lellis, C., Székelyhidi, L.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417–1436, 2009

    Article  MathSciNet  Google Scholar 

  9. Di Perna, R., Majda, A.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108(4), 667–689, 1987

    Article  ADS  MathSciNet  Google Scholar 

  10. Esposito, P., Grossi, M., Pistoia, A.: On the existence of blowing-up solutions for a mean field equation. Ann. Inst. H. Poincaré Anal. Non Lináire22(2), 227–257, 2005

    Article  ADS  MathSciNet  Google Scholar 

  11. Kiselev, A., Roquejoffre, J.-M., Ryzhik, L.: Appetizers in Nonlinear PDEs. 2017. http://math.stanford.edu/~ryzhik/STANFORD/STANF272-17/book-split-chapt1and12.pdf

  12. Kirchhoff, G.: Vorlesungen über mathematische Physik. Teubner, Leipzig 1876

    MATH  Google Scholar 

  13. Lacave, C., Miot, E.: Uniqueness for the vortex-wave system when the vorticity is initially constant near the point vortex. SIAM J. Math. Anal. 41(3), 1138–1163, 2009

    Article  MathSciNet  Google Scholar 

  14. Lin, C.C.: On the motion of vortices in 2D I. Existence of the Kirchhoff–Routh function. Proc. Natl. Acad. Sci. 27, 570–575, 1941

    Article  ADS  Google Scholar 

  15. Lopes Filho, M.C., Miot, E., Nussenzveig Lopes, H.J.: Existence of a weak solution in \(L^p\) to the vortex–wave system. J. Nonlinear Sci. 21(5), 685–703, 2011

    Article  ADS  MathSciNet  Google Scholar 

  16. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow, vol. 27 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge 2002

    Google Scholar 

  17. Marchioro, C., Pulvirenti, M.: Euler evolution for singular initial data and vortex theory. Commun. Math. Phys. 91(4), 563–572, 1983

    Article  ADS  MathSciNet  Google Scholar 

  18. Routh, E.J.: Some applications of conjugate functions. Proc. Lond. Math. Soc. 12, 73–89, 1881

    MathSciNet  MATH  Google Scholar 

  19. Shnirelman, A.: Weak solutions with decreasing energy of incompressible Euler equations. Commun. Math. Phys. 210(3), 541–603, 2000

    Article  ADS  MathSciNet  Google Scholar 

  20. Smets, D., Van Schaftingen, J.: Desingulariation of vortices for the Euler equation. Arch. Ration. Mech. Anal. 198, 869–925, 2010

    Article  MathSciNet  Google Scholar 

  21. Yudovich, V.: Nonstationary flow of an ideal incompressible liquid. Zh. Vych. Mat. 3, 1032–1066, 1963

    Google Scholar 

Download references

Acknowledgements

We are grateful to Robert L. Jerrard for many useful discussions on the two-dimensional Euler flow, in particular about its linearization around a Liouville profile. M. Musso thanks the Center of Mathematical Modeling at Universidad de Chile for its hospitality while part of this work was concluded. J. Dávila has been supported by grants Fondecyt 1170224 and PAI AFB-170001, Chile. M. del Pino has been supported by a UK Royal Society Research Professorship and Grant PAI AFB-170001, Chile. M. Musso has been supported by grant FONDECYT 1160135, Chile. The research of J. Wei is partially supported by NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Del Pino.

Additional information

Communicated by F. Lin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davila, J., Del Pino, M., Musso, M. et al. Gluing Methods for Vortex Dynamics in Euler Flows. Arch Rational Mech Anal 235, 1467–1530 (2020). https://doi.org/10.1007/s00205-019-01448-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01448-8

Navigation