Log in

Regularization of Point Vortices Pairs for the Euler Equation in Dimension Two

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we construct stationary classical solutions of the incompressible Euler equation approximating singular stationary solutions of this equation. This procedure is carried out by constructing solutions to the following elliptic problem

$$\left\{\begin{array}{l@{\quad}l} -\varepsilon^2 \Delta u = \sum\limits_{i=1}^m \chi_{\Omega_i^{+}} \left(u - q - \frac{\kappa_i^{+}}{2\pi} {\rm ln} \frac{1}{\varepsilon}\right)_+^p\\ \quad - \sum_{j=1}^n \chi_{\Omega_j^{-}} \left(q - \frac{\kappa_j^{-}}{2\pi} {\rm \ln} \frac{1}{\varepsilon} - u\right)_+^p , \quad \quad x \in \Omega,\\ u = 0, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x \in \partial \Omega,\end{array}\right.$$

where p > 1, \({\Omega \subset \mathbb{R}^2}\) is a bounded domain, \({\Omega_i^{+}}\) and \({\Omega_j^{-}}\) are mutually disjoint subdomains of Ω and \({\chi_{\Omega_i^{+}} ({\rm resp}.\; \chi_{\Omega_j^{-}})}\) are characteristic functions of \({\Omega_i^{+}({\rm resp}. \;\Omega_j^{-}})\), q is a harmonic function. We show that if Ω is a simply-connected smooth domain, then for any given C 1-stable critical point of Kirchhoff–Routh function \({\mathcal{W}\;(x_1^{+},\ldots, x_m^{+}, x_1^{-}, \ldots, x_n^{-})}\) with \({\kappa^{+}_i > 0\,(i = 1,\ldots, m)}\) and \({\kappa^{-}_j > 0\,(j = 1,\ldots,n)}\), there is a stationary classical solution approximating stationary m + n points vortex solution of incompressible Euler equations with total vorticity \({\sum_{i=1}^m \kappa^{+}_i -\sum_{j=1}^n \kappa_j^{-}}\). The case that n = 0 can be dealt with in the same way as well by taking each \({\Omega_j^{-}}\) as an empty set and set \({\chi_{\Omega_j^{-}} \equiv 0,\,\kappa^{-}_j=0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Struwe M.: Existence of steady vortex rings in an ideal fluid. Arch. Rational Mech. Anal. 108, 97–109 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Yang, J.: Asymptotic behaviour in planar vortex theory. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1, 285–291 (1990)

  3. Arnold, V.I., Khesin, B.A.: Topological methods in hydrodynamics. In: Applied Mathematical Sciences, vol. 125. Springer, New York, 1998

  4. Badiani T.V.: Existence of steady symmetric vortex pairs on a planar domain with an obstacle. Math. Proc. Cambridge Philos. Soc. 123, 365–384 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bartsch T., Pistoia A., Weth T.: N-vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-Poisson and the Lane–Emden–Fowler equations. Commun. Math. Phys. 297, 653–686 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Benjamin, T.B.: The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics. In: Applications of Methods of Functional Analysis to Problems in Mechanics. Lecture Notes in Mathematics, vol. 503, pp. 8–29, 1976

  7. Berger M.S., Fraenkel L.E.: Nonlinear desingularization in certain free-boundary problems. Commun. Math. Phys. 77, 149–172 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Burton G.R.: Vortex rings in a cylinder and rearrangements. J. Differ. Equ. 70, 333–348 (1987)

    Article  ADS  MATH  Google Scholar 

  9. Burton G.R.: Steady symmetric vortex pairs and rearrangements. Proc. R. Soc. Edinburgh. 108A, 269–290 (1988)

    Article  Google Scholar 

  10. Burton G.R.: Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. Henri Poincare. Analyse Nonlineare, 6, 295–319 (1989)

    MATH  Google Scholar 

  11. Burton G.R.: Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex. Acta Math. 163, 291–309 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Caffarelli L., Friedman A.: Asymptotic estimates for the plasma problem. Duke Math. J. 47, 705–742 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cao D., Küpper T.: On the existence of multi-peaked solutions to a semilinear Neumann problem. Duke Math. J. 97, 261–300 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cao D., Peng S., Yan S.: Multiplicity of solutions for the plasma problem in two dimensions. Adv. Math. 225, 2741–2785 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dancer E.N., Yan S.: The Lazer–McKenna conjecture and a free boundary problem in two dimensions. J. Lond. Math. Soc. 78, 639–662 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Elcrat A.R., Miller K.G.: Steady vortex flows with circulation past asymmetric obstacles. Commun. Partial Differ. Equ., 12, 1095–1115 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Elcrat A.R., Miller K.G.: Rearrangements in steady vortex jows with circulation. Proc. Am. Math. Soc., 111, 1051–1055 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Elcrat A.R., Miller K.G.: Rearrangements in steady multiple vortex flows. Commun. Partial Differ. Equ. 20, 1481–1490 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fraenkel L.E., Berger M.S.: global theory of steady vortex rings in an ideal fluid. Acta Math. 132, 13–51 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kulpa W.: The Poincaré–Miranda theorem. Am. Math. Mon. 104, 545–550 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li G., Yan S., Yang J.: An elliptic problem related to planar vortex pairs. SIAM J. Math. Anal. 36, 1444–1460 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Li Y., Peng S.: Multiple solutions for an elliptic problem related to vortex pairs. J. Differ. Equ. 250, 3448–3472 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Lin C.C.: On the motion of vortices in two dimension – I. Existence of the Kirchhoff–Routh function. Proc. Natl. Acad. Sci. USA 27, 570–575 (1941)

    Article  ADS  MATH  Google Scholar 

  24. Miranda C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. 3, 5–7 (1940)

    MathSciNet  Google Scholar 

  25. Marchioro C., Pulvirenti M.: Euler evolution for singular initial data and vortex theory. Commun. Math. Phys. 91, 563–572 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Miller K.G.: Stationary corner vortex configurations. Z. Angew. Math. Phys. 47, 39–56 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ni W.-M.: On the existence of global vortex rings. J. Anal. Math. 37, 208–247 (1980)

    Article  MATH  Google Scholar 

  28. Norbury J.: Steady planar vortex pairs in an ideal fluid. Commun. Pure Appl. Math. 28, 679–700 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Saffman P.G., Sheffield J.: Flow over a wing with an attached free vortex. Stud. Appl. Math. 57, 107–117 (1977)

    MATH  Google Scholar 

  30. Smets D., Van Schaftingen J.: Desingulariation of vortices for the Euler equation. Arch. Rational Mech. Anal. 198, 869–925 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Turkington, B.: On steady vortex flow in two dimensions. I, II. Comm. Partial Differ. Equ. 8, 999–1030, 1031–1071 (1983)

    Google Scholar 

  32. De Valeriola S., Van Schaftingen, J.: Desingularization of vortex rings and shallow water vortices by semilinear elliptic problem, ar**v:12093988v1

  33. Yang J.: Existence and asymptotic behavior in planar vortex theory. Math. Models Methods Appl. Sci. 1, 461–475 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yang J.: Global vortex rings and asymptotic behaviour. Nonlinear Anal. 25, 531–546 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daomin Cao.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, D., Liu, Z. & Wei, J. Regularization of Point Vortices Pairs for the Euler Equation in Dimension Two. Arch Rational Mech Anal 212, 179–217 (2014). https://doi.org/10.1007/s00205-013-0692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0692-y

Keywords

Navigation