Log in

Vertebral body integrity: a review of various anatomical factors involved in the lumbar region

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The body of the vertebra can be affected in the majority of the conditions involving the lumbar spine. Multiple references, both books and periodicals, have been reviewed, and the anatomical factors responsible for the vertebral body integrity in the lumbar spine have been included under the following important areas, namely, morphology, development, genetics, microscopic examination using histology, structural architecture, blood supply, neuromuscular control, and biomechanics.

Introduction

The anatomy provides a three-dimensional frame work to support the interaction between the physiological and pathological alterations. The body of the vertebra can be affected in a majority of acute or chronic conditions involving the lumbar spine. The etiology of these conditions is multifactorial, which has been dealt with in previous studies sporadically. This study aims to review and incorporate the important anatomical factors which can influence the integrity of vertebral bodies in the lumbar region and manifest as low back pain.

Methods

Multiple references, both books and periodicals, have been reviewed for the literature. Electronic databases, including Medline and PubMed, were used to collect the latest information. They were finally arranged in an anatomical framework for the article. An attempt has been made to cover these relevant issues in an integrated way in the article and have been structured into introduction, morphology, development, genetics, microscopic examination using histology, structural architecture, blood supply, neuromuscular control, biomechanics, and conclusion. The aforementioned anatomical aspects, some of which have received less attention in the literature, may be helpful to clinicians for restoring the mobility, stability, and load bearing capacity of the lumbar spine as well as planning better management strategies, especially for the chronic low back pain.

Results

In our article all the anatomical factors affecting the integrity of vertebral body, including the morphology, development, genetics, growth and ossification, blood supply, specifically in the lumbar region, have been described, which were not covered earlier. The limitations of this review is its wide dimensions; hence, there are fair scopes of missing many relevant facts, as all of them cannot be compiled in a single article. We have attempted to confine our views to different anatomical domains only, this is our second limitation. Additional studies are required to incorporate and discuss the uncovered relevant scientific details.

Conclusions

The integrity of the body of the lumbar vertebra is multifactorial (Fig. 8). The vast spectrum of the anatomical domain influencing it has been summarized. The evolution of erect posture is a landmark in the morphology of human beings and the lumbar lordosis, which has also contributed to the gross design of the vertebral body, is one of the most important adaptations for axial loading and bipedal movements. The role of metamerism in the evolution of vertebrate morphology is repeated in the development of spine. The body of the vertebra is intersegmental in origin, which results in dual vascular and nerve supply, both from superior and inferior aspects of the body of the lumbar vertebrae. The vertebral body ossifies from three primary centers, one for centrum, which will form the major portion of body, and the other two for neural arches. The cartilaginous growth plate is mainly responsible for the longitudinal vertebral growth. Regional differentiation of the vertebral column, and the definite pattern of the structure of the different vertebra, is regulated by a large number of genetic factors, including the Hox genes. The vertebral body design therefore provides the requirements for optimal load transfer by maximal strength with minimal weight. Bone mineral density (BMD), bone quality, microarchitecture, and material properties are the important factors that contribute to bone strength. BMD is highly heritable; bone mineral distribution and architecture are also shown to be under strong genetic influence. All the aforementioned factors finally integrate to ensure mainly the mobility, stability, and load bearing capacity of the lumbar spine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Daggfeldt K, Thorstensson A (2003) The mechanics of back-extensor torque production about the lumbar spine. J Biomech 36(6):815–825. [PubMed] [Full Text]

    Article  PubMed  Google Scholar 

  2. Fazzalari NL, Manthey B, Parkinson IH (2001) Intervertebral disc disorganisation and its relationship to age adjusted vertebral body morphometry and vertebral bone architecture. Anat Rec 262:331–339. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  3. Homminga J, Weinans H, Gowin W et al (2001) Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine 24(14):1555–1561

    Article  Google Scholar 

  4. Rothman RH, Simeone FA (1992) The spine 3rd edn vol 1. WB Saunders Company, Philadelphia, pp 3–87

    Google Scholar 

  5. Gasser RF (1979) Evidence that sclerotomal cells do not migrate medially during normal embryonic development of the rat. Am J Anat 154:509

    Article  PubMed  CAS  Google Scholar 

  6. Meyer DB (1978) The appearance of cervical ribs during early human foetal development. Anat Rec 190:481

    Google Scholar 

  7. Sadler TW (2004) Langman’s medical embryology 9th edn. Williams and Wilkins, Baltimore, Maryland, USA, pp 193–194

    Google Scholar 

  8. Tickle C (2003) Patterning in vertebrate development. Oxford University Press, Oxford

    Google Scholar 

  9. Robert JS (2001) Interpreting the homeobox: metaphors of gene action and activation in development and evolution. Evol Dev 3:287–295

    Article  PubMed  CAS  Google Scholar 

  10. Standring S (2005) Gray’s anatomy the anatomical basis of clinical practice 39th edn, Elseivier, Churchill Livingstone, London, pp 204–210, 736–772

    Google Scholar 

  11. Iimura T, Pourquie O (2006) Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature 3(442):568–571

    Article  CAS  Google Scholar 

  12. Carapuco M, Novoa A, Bolola N et al (2005) Hox genes specify vertebral types in the presomitic mesoderm. Genes Dev 15 19(18):2116–2121

    Article  CAS  Google Scholar 

  13. Richardson MK, Keuck G (2002) Haeckel’s ABC of evolution and development. Biol Rev Camb Philos Soc 77:495–528

    Article  PubMed  Google Scholar 

  14. Fontaine-Perus J (2000) Mouse-chick chimera: an experimental system for study of somite development. Curr Top Dev Biol 48:269–300

    PubMed  CAS  Google Scholar 

  15. Burkemper KM, Garris DR (2006) Influences of obese (ob/ob) and diabetes (db/db) genotype mutations on lumber vertebral radiological and morphometric indices: Skeletal deformation associated with dysregulated systemic glucometabolism. BMC Musculoskelet Disord 7:10

    Article  PubMed  CAS  Google Scholar 

  16. Rubin CD (2005) Emerging concepts in osteoporosis and bone strength. Curr Med Res Opin 21(7):1049–1056

    Article  PubMed  Google Scholar 

  17. Long JR, Liu PI, Lu Y et al (2005) Tests of linkage and/or association of TGF-beta1 and COL1A1 genes with bone mass. Osteoporos Int 16(1):86–92

    Article  PubMed  CAS  Google Scholar 

  18. Furuta I, Kobayashi M, Fu**o T et al (2004) Bone mineral density of the lumbar spine is associated with TNF gene polymorphisms in early postmenopausal Japanese women. Calcif Tissue Int 74(6):509–515

    Article  PubMed  CAS  Google Scholar 

  19. Jian WX, Long JR, Li MX et al (2005) Genetic determination of variation and covariation of bone mineral density at the hip and spine in a Chinese population. J Bone Miner Metab 23(2):181–185

    Article  PubMed  Google Scholar 

  20. Enjuanes A, Garcia-Giralt N, Supervia A et al (2006) A new SNP in a negative regulatory region of the CYP19A1 gene is associated with lumbar spine (BMD) in postmenopausal women. Bone 38(5):738–743

    Article  PubMed  CAS  Google Scholar 

  21. Lorentzon M, Eriksson AL, Mellsstrom D et al (2004) The COMT val158met polymorphism is associated with peak BMD in men. J Bone Miner Res 19(12):2005–2011

    Article  PubMed  CAS  Google Scholar 

  22. Ioannidis JP, Ralston SH, Bennet ST et al (2004) Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 3 292(17):2105–2114

    Article  Google Scholar 

  23. Bick EM, Capel JW, Spector S (1950) Longitudinal growth of the human vertebra. J Bone Joint Surg 32A:803

    Google Scholar 

  24. Turek SL (1984) Orthopaedics: principles and their applications 4th edn vol 2, JB Lippincott Company, Philadelphia, Pennsylvenia, pp 1561–1563

    Google Scholar 

  25. Bick EM, Capel JW (1951) The ring apophysis of the human vertebra. J Bone Joint Surg 33A:783

    Google Scholar 

  26. Hayes WC, Myers ER (1997) Biomechanical considerations of hip and spine fractures in osteoporotic bone. Inst Course Lect 46:431–438

    CAS  Google Scholar 

  27. Hayes WC, Piazza SJ, Zysset PK (1991) Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin N Am 29(1):1–18. [PubMed]

    PubMed  CAS  Google Scholar 

  28. Myers ER, Wilson SE (1997) Biomechanics of osteoporosis and vertebral fracture. Spine 22(24 Suppl):25S–31S. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  29. Briggs AM, Alison MG, John DW et al (2004) A review of anatomical and mechanical factors affecting vertebral body intergrity. Int J Med Sci 1(3):170–180

    PubMed  Google Scholar 

  30. Epstein S (2005) The roles of bone mineral density, bone turnover, and other properties in reducing fracture risk during antiresorptive therapy. Mayo Clin Proc 80(3):379–388

    PubMed  Google Scholar 

  31. Gong H, Zhang M, Qin L et al (2006) Regional variations in microscopical properties of vertebral trabeculae with structural groups. Spine 31(1):24–32

    Article  PubMed  Google Scholar 

  32. Yoganandan N, Pintar FA, Stemper BD et al (2006) Bone mineral density of human female cervical and lumbar spines from quantitative computed tomography. Spine 31(1):73–76

    Article  PubMed  Google Scholar 

  33. Friedman AW (2006) Important determinants of bone strength: beyond bone mineral density. J Clin Rheumatol 12(2):70–77

    Article  PubMed  Google Scholar 

  34. Sievanen H, Kannus P, Nieminen V et al (1996) Estimation of various mechanical characteristics of human bones using dual energy X-ray absorptiometry: Methodology and precision. Bone 18(1):S17–S27

    Article  Google Scholar 

  35. Yeh OC, Keaveny TM (2001) Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone. J Orthop Res 19(6):1001–1007. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  36. Burr DB, Turner CH, Naick P et al (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31(4):337–345. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  37. Silva MJ, Keaveny TM, Hayes WC (1997) Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22(2):140–150. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  38. Kopperdahl DL, Pearlman JL, Keaveny TM (2000) Biomechanical consequences of an isolated overload on the human vertebral body. J Orthop Res 18(5):685–690. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  39. Smit TH, Odgaard A, Schneider E (1997) Structure and function of vertebral trabecular bone. Spine 22(24):2823–2833. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  40. Amling M, Posl M, Ritzel H et al (1996) Architecture and distribution of cancellous bone yield vertebral fracture clues: A histomorphometric analysis of the complete spinal column from 40 autopsy specimens. Arch Orthop Trauma Surg 115:262–269. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  41. Simpson EK, Parkinson IH, Manthey B et al (2001) Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 16(4):681–687. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  42. Melton LJ 3rd, Chao EYS, Lane JM (1988) Biomechanical aspects of fractures. In: Riggs BL, Melton LJ (eds) Osetoporosis: etiology, diagnosis, and management. Raven Press, New York pp 111–131

    Google Scholar 

  43. Abraham R, Walton J, Russel L et al (2006) Dietary determinants of post-menopausal bone loss at the lumbar spine: a possible beneficial effect of iron. Osteoporos Int 17(8):1165–1173

    Article  PubMed  CAS  Google Scholar 

  44. Mazess RB, Wahner HM (1988) Nuclear medicine and densitometry. In: Riggs BL, Melton LJ (eds) Osteoporosis: etiology, diagnosis, and management. Raven Press, New York pp 251–295

    Google Scholar 

  45. Singer K, Edmondston S, Day R et al (1995) Prediction of thoracic and lumbar vertebral body compressive strength-correlations with bone-mineral density and vertebral region. Bone 17(2):167–174. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  46. De Smet AA, Robinson RG, Johnson BE et al (1988) Spinal compression fractures in osteoporotic women: Patterns and relationship to hyperkyphosis. Radiology 166:497–500. [PubMed]

    PubMed  Google Scholar 

  47. Duan YB, Parfitt AM, Seeman E (1999) Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 14(10):1796–1802. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  48. Eastell R, Cedel SL, Wahner HW 3rd et al (1991) Classification of vertebral fractures. J Bone Miner Res 6(3):207–215. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  49. Gilsanz V, Loro LM, Roe TF et al (1995) Vertebral size in elderly women with osteoporosis: Mechanical implications and relationships to fractures. J Clin Invest 95(5):2332–2337. [Free Full text in PMC]

    Article  PubMed  CAS  Google Scholar 

  50. Legrand E, Chappard D, Pascaretti C et al (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15(1):13–19. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  51. Mitra D, Elvins DM, Speden DJ et al (2000) The prevalence of vertebral fractures in mild ankylosing spondylitis and their relationship to bone mineral density. Rheumatology 39(1):85–89. [PubMed] [Free Full Text]

    Article  PubMed  CAS  Google Scholar 

  52. Peel NFA, Moore DJ, Barrington NA et al (1995) Risk of vertebral fracture and relationship to bone-mineral density in steroid-treated rheumatoid-arthritis. Ann Rheum Dis 54(10):801–806. [PubMed]

    PubMed  CAS  Google Scholar 

  53. Sandor T, Felsenberg D, Brown E (1999) Comments on the hypotheses underlying fracture risk assessment in osteoporosis as proposed by the World Health Organization. Calcif Tissue Int 64:267–270. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  54. Spector TD, Hall GM, McCloskey EV et al (1993) Risk of vertebral fracture in women with rheumatoid-arthritis. Brit Med J 306(6877):558. [PubMed]

    PubMed  CAS  Google Scholar 

  55. Spector TD, McCloskey EV, Doyle DV et al (1993) Prevalence of vertebral fracture in women and the relationship with bone-density and symptoms-the chingford study. J Bone Miner Res 8(7):817–822. [PubMed]

    PubMed  CAS  Google Scholar 

  56. Antonacci MD, Hanson DS, Leblanc A et al (1997) Regional variation in vertebral bone density and trabecular architecture are influenced by osteoarthritic change and osteoporosis. Spine 22(20):2393–2401. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  57. Banse X, Devogelaer JP, Munting E et al (2001) Inhomogeneity of human vertebral cancellous bone: Systematic density and structure patterns inside the vertebral body. Bone 28(5):563–571. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  58. McCubbery DA, Cody DD, Peterson EL et al (1995) Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. J Biomech 28(8):891–899. [PubMed] [Full Text]

    Article  Google Scholar 

  59. Pate D, Goobar J, Resnick D et al (1988) Traction osteophytes of the lumbar spine: radiographic-pathologic correlation. Radiology 166(3):843–846

    PubMed  CAS  Google Scholar 

  60. Rand T, Schneider B, Grampp S et al (1997) Influence of osteophytic size on bone mineral density measured by dual X-ray absorptiometry. Acta Radiol 38(2):210–213

    Article  PubMed  CAS  Google Scholar 

  61. Jones G, Nguyen T, Sambrook PN et al (1995) A longitudinal study of the effect of spinal degenerative disease on bone density in the elderly. J Rheumatol 22(5):932–936

    PubMed  CAS  Google Scholar 

  62. O’Neill TW, McCloskey FV, Kanis JA et al (1999) The distribution, determinants, and clinical correlates of vertebral osteophytosis: a population based survey. J Rheumatol 6(4):842–848

    Google Scholar 

  63. Cvijedic S, McCloskey E, Korsic M (2000) Vertebral osteophytosis and vertebral deformities in an elderly population sample. Vien Klin Wochenschr 5 112(9):407–412

    Google Scholar 

  64. Karasik D, Kiel DP, Kiely DK et al (2006) Abdominal aortic calcification and exostoses at the hand and lumbar spine: the framingham study. Calcif Tissue Int 78(1):1–8

    Article  PubMed  CAS  Google Scholar 

  65. Matsumoto M, Chiba K, Nojiri K et al (2002) Extraforaminal entrapment of the fifth lumbar spinal nerve by osteophytes of the lumbosacral spine: anatomic study and a report of four cases. Spine 15 27(6):E169–E173

    Article  Google Scholar 

  66. Batson OV (1940) The function of the vertebral veins and their role in the spread of metastases. Am Surg 112:138–145

    CAS  Google Scholar 

  67. Bogduk N (1997) Clinical anatomy of the lumbar spine and sacrum 3rd edn, Churchill Livingstone, Edinburgh

    Google Scholar 

  68. Groen G, Baljet B, Drukker J (1990) The nerves and nerve plexuses of the human vertebral column. Amer J Anat 188:282–296

    Article  PubMed  CAS  Google Scholar 

  69. Cooper RG, Hollis S, Jason MIV (1992) Gender variation in human spinal and paraspinal structures. Clin Biomech 7:120–124

    Article  Google Scholar 

  70. Mosekilde L (1994) Vertebral bone quality and strength. In: Cooper C, Reeve J (eds) Spine: vertebral osteoporosis, vol 8. Hanley & Belfus Inc, Philadelphia pp 63–81

    Google Scholar 

  71. Mannion AF, Dumas GA, Cooper RG et al (1997) Muscle fibre size and type distribution in thoracic and lumbar regions of erector spinae in healthy subjects without low back pain: Normal values and sex differences. J Anat 190:505–513. [PubMed]

    Article  PubMed  Google Scholar 

  72. Dolan P, Adams MA (1993) The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities. J Biomech 26(4–5):513–522. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  73. Lavender SA, Mirka GA, Schoenmarklin RW et al (1989) The effects of preview and task symmetry on trunk muscle response to sudden loading. Hum Factors 31(1):101–115. [PubMed]

    PubMed  CAS  Google Scholar 

  74. Nussbaum MA, Chaffin DB, Rechtien CJ (1995) Muscle lines-of-action affect predicted forces in optimization-based spine muscle modelling. J Biomech 28(4):401–409. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  75. Tveit P, Daggfeldt K, Hetland S et al (1994) Erector spinae lever arm length variations with changes in spinal curvature. Spine 19(2):199–204. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  76. Moseley GL, Hodges PW, Gandevia SC (2002) Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine 27(2):E29–E36. [PubMed] [Full Text]

    Article  PubMed  Google Scholar 

  77. McGill SM, Hughson RL, Parks K (2000) Changes in lumbar lordosis modify the role of the extensor muscles. Clin Biomech 15:777–780

    Article  CAS  Google Scholar 

  78. Eagan MS, Sedlock DA (2001) Kyphosis in active and sedentary postmenopausal women. Med Sci Sport Exer 33(5):688–695

    Article  CAS  Google Scholar 

  79. Limburg PJ, Sinaki M, Rogers JW et al (1991) A useful technique for measurement of back strength in osteoporotic and elderly patients. Mayo Clin Proc 66:39–44. [PubMed]

    PubMed  CAS  Google Scholar 

  80. Sinaki M, Khosla S, Limburg PJ et al (1993) Muscle strength in osteoporotic versus normal women. Osteoporosis Int 3:8–12

    Article  CAS  Google Scholar 

  81. Pfeifer M, Begerow B, Minne HW et al (2001) Vitamin D status, trunk muscle strength, body sway, falls and fractures among 237 postmenopausal women with osteoporosis. Exp Clin Endocr Diab 109(2):87–92

    Article  CAS  Google Scholar 

  82. Sinaki M, Fitzpatrick LA, Ritchie CK et al (1998) Site-specificity of bone mineral density and muscle strength in women: job-related and physical activity. Amer J Physical Med 77(6):470–476

    CAS  Google Scholar 

  83. Tsauo JY, Chien MY, Yang RS (2002) Spinal performance and functional impairment in postmenopausal women with osteoporosis and osteopenia without vertebral fracture. Osteoporosis Int 13:456–460

    Article  CAS  Google Scholar 

  84. Panjabi MM (1992) The stabilizing system of the spine, part I: function, dysfunction, adaptation, and enhancement. J Spinal Disord 5:383–389. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  85. Hodges P, Cresswell A, Thorstensson A (1999) Preparatory trunk motion accompanies rapid upper limb movement. Exp Brain Res 124(1):69–79. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  86. Hodges PW, Richardson CA (1996) Inefficient muscular stabilization of the lumbar spine associated with low back pain: a motor control evaluation of transverses abdominis. Spine 21(22):2640–2650. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  87. Nachemson A (1966) The load on lumbar discs in different positions of the body. Clin Orthop 45:107–122. [PubMed]

    PubMed  CAS  Google Scholar 

  88. Gracovetsky S, Farfan H (1986) The optimum spine. Spine 11(6):543–573. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  89. Ebstein BS (1976) The spine a radiological text and atlas 4th edn, Harper and Row Publishers, Hagerstown, London, pp 33

    Google Scholar 

  90. Edmondston SJ, Singer KP, Day RE et al (1997) Ex vivo estimation of thoracolumbar vertebral body compressive strength: The relative contributions of bone densitometry and vertebral morphometry. Osteoporosis Int 7(2):142–148

    Article  CAS  Google Scholar 

  91. Duan YB, Seeman E, Turner CH (2001) The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res 16(12):2276–2283. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  92. Gilsanz V, Boechat MI, Gilsanz R et al (1994) Gender differences in vertebral sizes in adults: Biomechanical implications. Radiology 190:678–682. [PubMed]

    PubMed  CAS  Google Scholar 

  93. Bouxsein ML, Karasik D (2006) Bone geometry and skeletal fragility. Curr Osteoporos Rep 4(2):49–56

    Article  PubMed  Google Scholar 

  94. Cherukuri M, Stanley RJ, Long R et al (2004) Anterior osteophyte discrimination in lumbar vertebra using size invariant features. Comput Med Imaging Graph 28:99–108

    Article  PubMed  Google Scholar 

  95. Schmitt H, Dubijanin E, Schneider S et al (2004) Radiographic changes in the lumbar spine in former elite athletes. Spine 15 29(22):2554–2559

    Article  Google Scholar 

  96. Turner TH (2002) Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int 13(2):97–104. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  97. Huiskes R, Ruimerman R, van Lenthe GH et al (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(8):704–706. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  98. Mannion AF, Adams MA, Dolan P (2000) Sudden and unexpected loading generates high forces on the lumbar spine. Spine 25(7):842–852. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  99. Dai LY, Wang XY, Wang CG et al (2006) Bone mineral density of the thoracolumbar spine in relation to burst fractures: a quantitative computed tomography study. Eur Spine J. Jun 2

  100. Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78(6):965–972

    Article  PubMed  CAS  Google Scholar 

  101. Kurowski P, Kubo A (1986) The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae. Spine 11(7):726–731. [PubMed]

    Article  PubMed  CAS  Google Scholar 

  102. Dai L (1998) The relationship between vertebral body deformity and disc degeneration in the lumbar spine of the senile. Eur Spine J 7:40–44. [PubMed] [Full Text]

    Article  PubMed  CAS  Google Scholar 

  103. Adams MA, Pollintine P, Tobias JH et al (2006) Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine. J Bone Miner Res 21(9):1409–1416

    Article  PubMed  Google Scholar 

  104. Takahashi I, Kikuchi S, Sato K et al (2006) Mechanical load of the lumbar spine during forward bending motion of the trunk-a biomechanical study. Spine 31(1):18–23

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, Prabhu, L.V., Saralaya, V.V. et al. Vertebral body integrity: a review of various anatomical factors involved in the lumbar region. Osteoporos Int 18, 891–903 (2007). https://doi.org/10.1007/s00198-007-0373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0373-5

Keywords

Navigation