Log in

Mixing convergence of LSE for supercritical AR(2) processes with Gaussian innovations using random scaling

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We prove mixing convergence of the least squares estimator of autoregressive parameters for supercritical autoregressive processes of order 2 with Gaussian innovations having real characteristic roots with different absolute values. We use an appropriate random scaling such that the limit distribution is a two-dimensional normal distribution concentrated on a one-dimensional ray determined by the characteristic root having the larger absolute value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barczy M, Nedényi F, Pap G (2023) Mixing convergence of LSE for supercritical AR(2) processes with Gaussian innovations using random scaling. ar**v: 2101.01590

  • Barczy M, Pap G (2023) A multidimensional stable limit theorem. Filomat 37(11):3493–3512

    MathSciNet  Google Scholar 

  • Cohn DL (2013) Measure theory, 2nd edn. Birkhäuser/Springer, New York

    Book  Google Scholar 

  • Datta S (1995) Limit theory and bootstrap for explosive and partially explosive autoregression. Stoch Process Appl 57:285–304

    Article  MathSciNet  Google Scholar 

  • Häusler E, Luschgy H (2015) Stable convergence and stable limit theorems. Springer, Cham

    Book  Google Scholar 

  • Jeganathan P (1988) On the strong approximation of the distributions of estimators in linear stochastic models, I and II: stationary and explosive AR models. Ann Stat 16(3):1283–1314

    Article  MathSciNet  Google Scholar 

  • Mann HB, Wald A (1943) On the statistical treatment of linear stochastic difference equations. Econometrica 11(3/4):173–220

    Article  MathSciNet  Google Scholar 

  • Mikulski PW, Monsour MJ (1998) Limiting distributions in the second order autoregressive process without a unit root. Technical ReportTR-5/98 Dept. of Math., American University of Beirut

  • Monsour MJ (2016) Decomposition of an autoregressive process into first order processes. J Multivar Anal 147:295–314

    Article  MathSciNet  Google Scholar 

  • Monsour MJ, Mikulski PW (1998) On limiting distributions in explosive autoregressive processes. Stat Prob Lett 37:141–147

    Article  MathSciNet  Google Scholar 

  • Narasimham GVL (1969) Some properties of estimators occuring in the theory of linear stochastic process. In: Fox KA, Sengupta JK, Narasimham GVL (eds) Economic models, estimation and risk programming: Essays in honor of Gerhard Tintner. Lecture Notes in Operations Research and Mathematical Economics. Springer-Verlag, Berlin, New York, pp 375–389

    Google Scholar 

  • Rényi A (1950) Contributions to the theory of independent random variables. Acta Mathematica Academiae Scientiarum Hungaricae 1:99–108

    MathSciNet  Google Scholar 

  • Rényi A (1958) On mixing sequences of sets. Acta Mathematica Academiae Scientiarum Hungaricae 9(1–2):215–228

    Article  MathSciNet  Google Scholar 

  • Rényi A (1963) On stable sequences of events. Sankhyā. Series A 25:293–302

    MathSciNet  Google Scholar 

  • Rényi A, Révész P (1958) On mixing sequences of random variables. Acta Mathematica Academiae Scientiarum Hungaricae 9(3–4):389–393

    Article  MathSciNet  Google Scholar 

  • Touati A (1996) Vitesse de convergence en loi de l’estimateur des moindres carrés d’un modèle autorégressif (Cas mixte). Ann Inst Henri Poincare (B) Probab Stat 32(2):211–230

  • Venkataraman KN (1967) A note on the least squares estimators of the parameters of a second order linear stochastic difference equation. Calcutta Stat Assoc Bull 16:15–28

    Article  MathSciNet  Google Scholar 

  • Venkataraman KN (1968) Some limit theorems on a linear explosive stochastic difference equation with a constant term, and their statistical applications. Sankhyā. Series A 30(1):51–74

    MathSciNet  Google Scholar 

  • Venkataraman KN (1973) Some convergence theorems on a second order linear explosive stochastic difference equation with a constant term. J Indian Stat Assoc 11:47–69

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Michael Monsour for sending us his paper Mikulski et al. (1998) and the paper of Venkataraman (1973) about the limiting distributions for the LSE of AR parameters of AR(2) processes. This paper was finished after the sudden death of our longtime co-author, mentor and dear friend Gyula Pap who passed away in October 2019. We dedicate this paper to him. Also, we would like to thank the referee for her/his comments that helped us improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mátyás Barczy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mátyás Barczy and Fanni Nedényi were supported by the project TKP2021-NVA-09. Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

Appendices

Appendices

Stable convergence

We recall the notions of stable and mixing convergence.

Definition A.1

Let \((\Omega ,{\mathcal F},{{\mathbb {P}}})\) be a probability space and \({\mathcal G}\subset {\mathcal F}\) be a sub-\(\sigma \)-field. Let \(({\varvec{X}}_n)_{n\in \mathbb {N}}\) and \({\varvec{X}}\) be \(\mathbb {R}^d\)-valued random variables defined on \((\Omega ,{\mathcal F},{{\mathbb {P}}})\), where \(d\in \mathbb {N}\).

(i) We say that \({\varvec{X}}_n\) converges \({\mathcal G}\)-stably to \({\varvec{X}}\) as \(n\rightarrow \infty \), if the conditional distribution \({{\mathbb {P}}}^{{\varvec{X}}_n\,|\,{\mathcal G}}\) of \({\varvec{X}}_n\) given \({\mathcal G}\) converges weakly to the conditional distribution \({{\mathbb {P}}}^{{\varvec{X}}\,|\,{\mathcal G}}\) of \({\varvec{X}}\) given \({\mathcal G}\) as \(n\rightarrow \infty \) in the sense of weak convergence of Markov kernels. It equivalently means that

$$\begin{aligned} \lim _{n\rightarrow \infty } {\mathbb {E}}_{{\mathbb {P}}}(\xi {\mathbb {E}}_{{\mathbb {P}}}(h({\varvec{X}}_n) \,|\,{\mathcal G}) ) = {\mathbb {E}}_{{\mathbb {P}}}( \xi {\mathbb {E}}_{{\mathbb {P}}}(h({\varvec{X}}) \,|\,{\mathcal G}) ) \end{aligned}$$

for all random variables \(\xi :\Omega \rightarrow \mathbb {R}\) with \({\mathbb {E}}_{{\mathbb {P}}}(\vert \xi \vert )<\infty \) and for all bounded and continuous functions \(h:\mathbb {R}^d\rightarrow \mathbb {R}\).

(ii) We say that \({\varvec{X}}_n\) converges \({\mathcal G}\)-mixing to \({\varvec{X}}\) as \(n\rightarrow \infty \), if \({\varvec{X}}_n\) converges \({\mathcal G}\)-stably to \({\varvec{X}}\) as \(n\rightarrow \infty \), and \({{\mathbb {P}}}^{{\varvec{X}}\,|\,{\mathcal G}} = {{\mathbb {P}}}^{\varvec{X}}\)\({{\mathbb {P}}}\)-almost surely, where \({{\mathbb {P}}}^{\varvec{X}}\) denotes the distribution of \({\varvec{X}}\) on \((\mathbb {R}^d,{\mathcal B}(\mathbb {R}^d))\) under \({{\mathbb {P}}}\). Equivalently, we can say that \({\varvec{X}}_n\) converges \({\mathcal G}\)-mixing to \({\varvec{X}}\) as \(n\rightarrow \infty \), if \({\varvec{X}}_n\) converges \({\mathcal G}\)-stably to \({\varvec{X}}\) as \(n\rightarrow \infty \), and \(\sigma ({\varvec{X}})\) and \({\mathcal G}\) are independent, which equivalently means that

$$\begin{aligned} \lim _{n\rightarrow \infty } {\mathbb {E}}_{{\mathbb {P}}}(\xi {\mathbb {E}}_{{\mathbb {P}}}(h({\varvec{X}}_n) \,|\,{\mathcal G}) ) = {\mathbb {E}}_{{\mathbb {P}}}(\xi ){\mathbb {E}}_{{\mathbb {P}}}(h({\varvec{X}})) \end{aligned}$$

for all random variables \(\xi :\Omega \rightarrow \mathbb {R}\) with \({\mathbb {E}}_{{\mathbb {P}}}(\vert \xi \vert )<\infty \) and for all bounded and continuous functions \(h:\mathbb {R}^d\rightarrow \mathbb {R}\).

In Definition A.1, \({{\mathbb {P}}}^{{\varvec{X}}_n\,|\,{\mathcal G}}\), \(n\in \mathbb {N}\), and \({{\mathbb {P}}}^{{\varvec{X}}\,|\,{\mathcal G}}\) are the \({{\mathbb {P}}}\)-almost surely unique \({\mathcal G}\)-measurable Markov kernels from \((\Omega ,{\mathcal F})\) to \((\mathbb {R}^d,{\mathcal B}(\mathbb {R}^d))\) such that for each \(n\in \mathbb {N}\),

$$\begin{aligned} \int _G {{\mathbb {P}}}^{{\varvec{X}}_n\,|\,{\mathcal G}}(\omega ,B)\,{{\mathbb {P}}}(\textrm{d}\omega ) = {{\mathbb {P}}}({\varvec{X}}_n^{-1}(B) \cap G) \qquad \text {for every} \ G\in {\mathcal G}, \ B\in {\mathcal B}(\mathbb {R}^d). \end{aligned}$$

and

$$\begin{aligned} \int _G {{\mathbb {P}}}^{{\varvec{X}}\,|\,{\mathcal G}}(\omega ,B)\,{{\mathbb {P}}}(\textrm{d}\omega ) = {{\mathbb {P}}}({\varvec{X}}^{-1}(B) \cap G) \qquad \text {for every} \ G\in {\mathcal G}, \ B\in {\mathcal B}(\mathbb {R}^d), \end{aligned}$$

respectively. For the notion of weak convergence of Markov kernels towards a Markov kernel, see Häusler and Luschgy (2015, Definition 2.2). For more details on stable convergence, see Häusler and Luschgy (2015, Chapter 3 and Appendix A).

A multidimensional stable limit theorem

Recall that \(\log ^+(x):= \log (x)\mathbb {1}_{\{x\geqslant 1\}} + 0\cdot \mathbb {1}_{\{ 0\leqslant x < 1\}}\) for \(x\in \mathbb {R}_+\), and for an event A with \({{\mathbb {P}}}(A)>0\), \({{\mathbb {P}}}_A\) denotes the conditional probability measure given A. For an \(\mathbb {R}^d\)-valued stochastic process \(({\varvec{U}}_n)_{n\in \mathbb {Z}_+}\), the increments \(\Delta {\varvec{U}}_n\), \(n \in \mathbb {Z}_+\), are defined by \(\Delta {\varvec{U}}_0:= {\varvec{0}}\) and \(\Delta {\varvec{U}}_n:= {\varvec{U}}_n - {\varvec{U}}_{n-1}\) for \(n \in \mathbb {N}\).

We recall a multidimensional analogue of Theorem 8.2 in Häusler and Luschgy (2015) which was proved in Barczy and Pap (2023, Theorem 1.4).

Theorem B.1

(Barczy and Pap (2023, Theorem 1.4)) Let \(({\varvec{U}}_n)_{n\in \mathbb {Z}_+}\) and \(({\varvec{B}}_n)_{n\in \mathbb {Z}_+}\) be \(\mathbb {R}^d\)-valued and \(\mathbb {R}^{d\times d}\)-valued stochastic processes, respectively, defined on a probability space \((\Omega ,{\mathcal F},{{\mathbb {P}}})\) and adapted to a filtration \(({\mathcal F}_n)_{n\in \mathbb {Z}_+}\). Suppose that \({\varvec{B}}_n\) is invertible for sufficiently large \(n \in \mathbb {N}\). Let \(({\varvec{Q}}_n)_{n\in \mathbb {N}}\) be a sequence in \(\mathbb {R}^{d\times d}\) such that \({\varvec{Q}}_n \rightarrow {\varvec{0}}\) as \(n \rightarrow \infty \) and \({\varvec{Q}}_n\) is invertible for sufficiently large \(n \in \mathbb {N}\). Let \(G \in {\mathcal F}_\infty := \sigma (\bigcup _{k=0}^\infty {\mathcal F}_k)\) with \({{\mathbb {P}}}(G) > 0\). Assume that the following conditions are satisfied:

  1. (i)

    there exists an \(\mathbb {R}^{d\times d}\)-valued, \({\mathcal F}_\infty \)-measurable random matrix \({\varvec{\eta }}:\Omega \rightarrow \mathbb {R}^{d\times d}\) such that \({{\mathbb {P}}}(G \cap \{\exists \,{\varvec{\eta }}^{-1}\}) > 0\) and

    $$\begin{aligned} {\varvec{Q}}_n {\varvec{B}}_n^{-1} {\mathop {\longrightarrow }\limits ^{{{\mathbb {P}}}_G}}{\varvec{\eta }}\qquad \text {as} \quad n \rightarrow \infty , \end{aligned}$$
  2. (ii)

    \(({\varvec{Q}}_n {\varvec{U}}_n)_{n\in \mathbb {N}}\) is stochastically bounded in \({{\mathbb {P}}}_{G\cap \{\exists \,{\varvec{\eta }}^{-1}\}}\)-probability, i.e.,

    $$\begin{aligned} \lim _{K\rightarrow \infty } \sup _{n\in \mathbb {N}} {{\mathbb {P}}}_{G\cap \{\exists \,{\varvec{\eta }}^{-1}\}}(\Vert {\varvec{Q}}_n {\varvec{U}}_n\Vert > K) = 0. \end{aligned}$$
  3. (iii)

    there exists an invertible matrix \({\varvec{P}}\in \mathbb {R}^{d\times d}\) with \(\varrho ({\varvec{P}}) < 1\) such that

    $$\begin{aligned} {\varvec{B}}_n {\varvec{B}}_{n-r}^{-1} {\mathop {\longrightarrow }\limits ^{{{\mathbb {P}}}_G}}{\varvec{P}}^r \qquad \text {as}\quad n \rightarrow \infty \text { for every} \ r \in \mathbb {N}, \end{aligned}$$
  4. (iv)

    there exists a probability measure \(\mu \) on \((\mathbb {R}^d, {\mathcal B}(\mathbb {R}^d))\) with \(\int _{\mathbb {R}^d} \log ^+(\Vert {\varvec{x}}\Vert ) \, \mu (\textrm{d}{\varvec{x}}) < \infty \) such that

    $$\begin{aligned} {\mathbb {E}}_{{\mathbb {P}}}\bigl (\textrm{e}^{\textrm{i}\langle {\varvec{\theta }},{\varvec{B}}_n\Delta {\varvec{U}}_n\rangle } \,|\,{\mathcal F}_{n-1}\bigr ) {\mathop {\longrightarrow }\limits ^{{{\mathbb {P}}}_{G\cap \{\exists {\varvec{\eta }}^{-1}\}}}}\int _{\mathbb {R}^d} \textrm{e}^{\textrm{i}\langle {\varvec{\theta }},{\varvec{x}}\rangle } \, \mu (\textrm{d}{\varvec{x}}) \qquad \text {as } \ n \rightarrow \infty \end{aligned}$$

    for every \({\varvec{\theta }}\in \mathbb {R}^d\).

Then

$$\begin{aligned} {\varvec{B}}_n {\varvec{U}}_n \rightarrow \sum _{j=0}^\infty {\varvec{P}}^j {\varvec{Z}}_j \qquad {\mathcal F}_\infty \text {-mixing under } {{\mathbb {P}}}_{G \cap \{\exists \,{\varvec{\eta }}^{-1}\}} \text { as } \ n \rightarrow \infty , \end{aligned}$$
(B.1)

and

$$\begin{aligned} {\varvec{Q}}_n {\varvec{U}}_n \rightarrow {\varvec{\eta }}\sum _{j=0}^\infty {\varvec{P}}^j {\varvec{Z}}_j \qquad {\mathcal F}_\infty \text {-stably under }{{\mathbb {P}}}_{G \cap \{\exists \,{\varvec{\eta }}^{-1}\}}\text { as } \ n \rightarrow \infty , \end{aligned}$$
(B.2)

where \(({\varvec{Z}}_j)_{j\in \mathbb {Z}_+}\) denotes a sequence of \({{\mathbb {P}}}\)-independent and identically distributed \(\mathbb {R}^d\)-valued random vectors being \({{\mathbb {P}}}\)-independent of \({\mathcal F}_\infty \) with \({{\mathbb {P}}}({\varvec{Z}}_0 \in B) = \mu (B)\) for all \(B \in {\mathcal B}(\mathbb {R}^d)\).

The series \(\sum _{j=0}^\infty {\varvec{P}}^j {\varvec{Z}}_j\) in (B.1) and in (B.2) is absolutely convergent \({{\mathbb {P}}}\)-almost surely, since, by condition (iv) of Theorem B.1, \({\mathbb {E}}_{{\mathbb {P}}}(\log ^+(\Vert {\varvec{Z}}_0\Vert ))<\infty \) and one can apply Lemma 1.3 in Barczy and Pap (2023). Further, the random variable \({\varvec{\eta }}\) and the sequence \(({\varvec{Z}}_j)_{j\in \mathbb {Z}_+}\) are \({{\mathbb {P}}}\)-independent in Theorem B.1, since \({\varvec{\eta }}\) is \({\mathcal F}_\infty \)-measurable and the sequence \(({\varvec{Z}}_j)_{j\in \mathbb {Z}_+}\) is \({{\mathbb {P}}}\)-independent of \({\mathcal F}_\infty \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barczy, M., Nedényi, F. & Pap, G. Mixing convergence of LSE for supercritical AR(2) processes with Gaussian innovations using random scaling. Metrika (2023). https://doi.org/10.1007/s00184-023-00936-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00184-023-00936-y

Keywords

Mathematics Subject Classification

Navigation