Log in

Estimation of firm productivity in the presence of spillovers and common shocks

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

Productivity is largely estimated ignoring the potential impact of spillovers and common shocks in the literature, and therefore, the estimates may be subject to the omitted variable bias and internal inconsistency. In this paper, we estimate a nonparametric production function, in which technology spillovers and common shocks have persistent effects on productivity and are controlled for through spatial networks and a factor structure in the productivity evolution process. We synthesize the proxy variable method to structurally identifying the production functions using the semiparametric common correlated effect estimator. The proposed model is then applied to the Chinese computer and peripheral equipment firms. We find that the annual productivity growth rate in this high-technology sector is about 15%. While firms are cross-sectionally dependent via both spatial and non-spatial connections, the productivity growth is largely explained by firms’ own effort, and mildly explained by the neighbors’ activities. Productivity is found to be higher in the areas of agglomeration, and the common shock effects on productivity are not necessarily correlated with the spatial variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that we deviate from Gandhi et al. (2017) in this second step. Specifically, when deriving Eq. (2.14), we substitute for \(\omega _{it-1}\) using the inverted material demand, whereas Gandhi et al. (2017) proxies for \(\omega _{it-1}\) using \({\mathscr {Y}}_{it-1} +\phi _{t-1}(K_{it-1}, L_{it-1})\). We deviate in this way to avoid estimating a nonparametric sieve approximation within another sieve approximation. As a consequence, our procedure involves more unknown parameters to be estimated because the unknown inverted material demand has 3 additional variables.

  2. When the nonparametric functions we approximate have subscript t, which means they are changing over time such as the function \(\beta _{Mt}(K_{it}, L_{it}, M_{it})\varLambda \), a time trend variable is added as an additional regressor, although it is not explicitly written.

  3. The time averages of the z variables are excluded from \(h_{t-1}\) to avoid potential collinearity, because \(z_{it-1}\) and \({\bar{z}}_{-i,t-1}\) have already been included on the right-hand side of the estimated equation (see eq. 3.4).

  4. The numbers of the entire manufacturing sector comes from ** et al. (2019).

  5. We use the “haversine” formula to calculate the shortest distance between two points, which assumes a spherical earth and ignores ellipsoidal effects. Haversine formula is implemented in R programming in the package “geosphere”.

  6. To compare with the productivity of the entire manufacturing sector in China, we refer to the findings by Malikov et al. (2020).

  7. The Pearl River Delta is located in the south of China. It is one of the most densely urbanized regions in the world. This metropolitan region includes Guangdong province, Hong Kong and Macau. Its dominant language is Cantonese. It has a population of about 60 million. The Yangtze River Delta is located in the middle east of China. This metropolitan region includes Shanghai, southern Jiangsu province and northern Zhejiang province. Its dominant language is Mandarin. It has a population of about 115 millions.

  8. In Fig. 6a, we normalize the factors by making their average 100 in the year of 1999.

References

  • Ackerberg DA, Caves K, Frazer G. Identification properties of recent production function estimators. Econometrica. 2015;83(6):2411–51.

    Article  Google Scholar 

  • Bai J. Inferential theory for factor models of large dimensions. Econometrica. 2003;71(1):135–71.

    Article  Google Scholar 

  • Bai J. Panel data models with interactive fixed effects. Econometrica. 2009;77(4):1229–79.

    Article  Google Scholar 

  • Bailey N, Holly S, Pesaran MH. A two stage approach to spatiotemporal analysis with strong and weak cross-sectional dependence. J Appl Econ. 2016;31(1):249–80.

    Article  Google Scholar 

  • Bailey N, Kapetanios G, Pesaran MH. Exponent of cross-sectional dependence: estimation and inference. J Appl Econom. 2015;31(6):929–60.

    Article  Google Scholar 

  • Baltagi BH, Egger PH, Kesina M. Firm-level productivity spillovers in China’s chemical industry: a spatial Hausman–Taylor approach. J Appl Econom. 2016;31(1):214–48.

    Article  Google Scholar 

  • Chudik A, Pesaran MH, Tosetti E. Weak and strong cross-section dependence and estimation of large panels. Econom J. 2011;14(1):C45–90.

    Article  Google Scholar 

  • Ciccone A, Hall R. Productivity and the density of economic activity. Am Econ Rev. 1996;86(1):54–70.

    Google Scholar 

  • Coe DT, Helpman E. International R&D spillovers. Eur Econ Rev. 1995;39(5):859–87.

    Article  Google Scholar 

  • Coricelli F, Driffield N, Pal S, Roland I. When does leverage hurt productivity growth? A firm level analysis. J Int Money Finance. 2012;31:1674–94.

    Article  Google Scholar 

  • Craven P, Wahba G. Smoothing noisy data with spline functions. Numer Math. 1979;31(4):377–403.

    Article  Google Scholar 

  • Dai M, Maitra M, Yu M. Unexceptional exporter performance in China? The role of processing trade. J Dev Econ. 2016;121:177–89.

    Article  Google Scholar 

  • De Loecker J. Detecting learning by exporting. Am Econ J Microecon. 2013;5(3):1–21.

    Article  Google Scholar 

  • Doraszelski U, Jaumandreu J. R&D and productivity: estimating endogenous productivity. Rev Econ Stud. 2013;80:1338–83.

    Article  Google Scholar 

  • Eberhardt M, Helmers C, Strauss H. Do spillovers matter when estimating private returns to R&D? Rev Econ Stat. 2013;95(2):436–48.

    Article  Google Scholar 

  • Ertur C, Musolesi A. Weak and strong cross-sectional dependence: a panel data analysis of international technology diffusion. J Appl Econom. 2017;32:477–503.

    Article  Google Scholar 

  • Fons-Rosen C, Kalemli-Ozcan S, Sorensen BE, Villegas-Sanchez VVC. Foreign investment and domestic productivity: identifying knowledge spillovers and competition effects. Cambridge: National Bureau of Economic Research; 2017.

    Book  Google Scholar 

  • Gandhi A, Navarro S, Rivers D. On the identification of production functions: how heterogeneous is productivity? J Polit Econ 2017; (forthcoming).

  • Glass AJ, Kenjegalieva K. A spatial productivity index in the presence of efficiency spillovers: evidence for U.S. banks, 1992–2015. Eur J Oper Res. 2019;273(3):1165–79.

    Article  Google Scholar 

  • Glass AJ, Kenjegalieva K, Sickles RC. A spatial autoregressive stochastic frontier model for panel data with asymmetric efficiency spillovers. J Econom. 2016;190(2):289–300.

    Article  Google Scholar 

  • Gonçalves S, Perron B. Bootstrap** factor models with cross sectional dependence. J Econom. 2020; (forthcoming).

  • Guariglia A, Liu X, Song L. Internal finance and growth: microeconometric evidence on Chinese firms. J Dev Econ. 2011;96(1):79–94.

    Article  Google Scholar 

  • Holly S, Pesaran MH, Yamagata T. A spatio-temporal model of house prices in the USA. J Econom. 2010;158(1):160–73.

    Article  Google Scholar 

  • Hou Z, ** M, Kumbhakar SC. Productivity spillovers and human capital: a semiparametric varying coefficient approach. Eur J Oper Res. 2020.

  • ** M, Zhao S, Kumbhakar SC. Financial constraints and firm productivity: evidence from Chinese manufacturing. Eur J Oper Res. 2019;275(3):1139–56.

    Article  Google Scholar 

  • Kahle D, Wickham H. ggmap: spatial visualization with ggplot2. R J. 2013;5(1):144–61.

    Article  Google Scholar 

  • Kapetanios G, Pesaran MH, Yamagata T. Panels with non-stationary multifactor error structures. J Econom. 2011;160(2):326–48.

    Article  Google Scholar 

  • Kelejian HH, Prucha IR. A generalized moments estimator for the autoregressive parameter in a spatial model. Int Econ Rev. 1999;40(2):509–33.

    Article  Google Scholar 

  • Keller W. Geographic localization of international technology diffusion. Am Econ Rev. 2002;92:120–42.

    Article  Google Scholar 

  • Keller W. International technology diffusion. J Econ Lit. 2004;42(3):752–82.

    Article  Google Scholar 

  • Lall SV, Shalizi Z, Deichmann U. Agglomeration economies and productivity in Indian industry. J Dev Econ. 2004;73(2):643–73.

    Article  Google Scholar 

  • Levinsohn J, Petrin A. Estimating production functions using inputs to control for unobservables. Rev Econ Stud. 2003;70(2):317–41.

    Article  Google Scholar 

  • Li Q, Racine JS. Nonparametric econometrics: theory and practice. Princeton: Princeton University Press; 2007.

    Google Scholar 

  • Lu D. Exceptional exporter performance? Evidence from Chinese manufacturing firms. Working Paper, University of Chicago; 2010.

  • Lu J, Lu Y, Tao Z. Exporting behavior of foreign affiliates: theory and evidence. J Int Econ. 2010;81:197–205.

    Article  Google Scholar 

  • Ma Y, Tang H, Zhang Y. Factor intensity, product switching, and productivity: evidence from Chinese exporters. J Int Econ. 2014;92(2):349–62.

    Article  Google Scholar 

  • Malikov E, Sun Y. Semiparametric estimation and testing of smooth coefficient spatial autoregressive models. J Econom. 2017;199(1):12–34.

    Article  Google Scholar 

  • Malikov E, Zhao S, Kumbhakar SC. Estimation of firm-level productivity in the presence of exports: evidence from China’s manufacturing. J Appl Econom. 2020; (forthcoming).

  • Moll B. Productivity losses from financial frictions: can self-financing undo capital misallocation? Am Econ Rev. 2014;104(10):3186–221.

    Article  Google Scholar 

  • Musolesi A. Basic stocks of knowledge and productivity: further evidence from the hierarchical bayes estimator. Econ Lett. 2007;95:54–9.

    Article  Google Scholar 

  • Olley GS, Pakes A. The dynamics of productivity in the telecommunications equipment industry. Econometrica. 1996;64(6):1263–97.

    Article  Google Scholar 

  • Ord J. Estimation methods for models of spatial interaction. J Am Stat Assoc. 1975;70:120–6.

    Article  Google Scholar 

  • Pesaran MH. General diagnostic tests for cross section dependence in panels. Cambridge Working Papers in Economics No. 0435. 2004.

  • Pesaran MH. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica. 2006;74(4):967–1012.

    Article  Google Scholar 

  • Pesaran MH. Testing weak cross-sectional dependence in large panels. Econom Rev. 2015;34:1089–117.

    Article  Google Scholar 

  • Pesaran MH, Tosetti E. Large panels with common factors and spatial correlation. J Econom. 2011;161(2):182–202.

    Article  Google Scholar 

  • Serpa JC, Krishnan H. The impact of supply chains on firm-level productivity. Manag Sci. 2018;64(2):511–32.

    Article  Google Scholar 

  • Su L, ** S. Sieve estimation of panel data models with cross section dependence. J Econom. 2012;169(1):34–47.

    Article  Google Scholar 

  • Triplett J. The Solow productivity paradox: what do computers do to productivity? Can J Econ. 1999;32(2):309–34.

    Article  Google Scholar 

  • Vidoli F, Canello J. Controlling for spatial heterogeneity in nonparametric efficiency models: an empirical proposal. Eur J Oper Res. 2016;249(2):771–83.

    Article  Google Scholar 

  • Zhao S, Liu R, Shang Z. Statistical inference on panel data models: a kernel ridge regression method. J Bus Econ Stat. 2019; (forthcoming).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man **.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank two anonymous referees and the guest editors for very detailed comments.

Appendices

Appendix: Bootstrap inference

In this appendix, we discuss the bootstrap method for statistical inference. To allow for cross-sectional dependence among idiosyncratic errors, we follow a multiple-step procedure similar to Gonçalves and Perron (2020). For a random variable \(x_{it}\), denote \(x_{t}=(x_{1t}, \ldots , x_{Nt})'\). Specifically, the bootstrap algorithm to get the standard errors is as follows.

  1. 1.

    For \(t=1, \ldots , T\), let

    $$\begin{aligned} lns_{M,t}^* = ln({\hat{\beta }}_{Mt}(K_{t},L_{t},M_{t}){\hat{\varOmega }}) - \eta _{t}^*, \end{aligned}$$
    (A.1)

    where \(\eta _t^*\) is a wild bootstrap resampled version of \({\hat{\eta }}_t=({\hat{\eta }}_{1t}, \ldots , {\hat{\eta }}_{Nt})'\) and \({\hat{\eta }}_{it} = ln({\hat{\beta }}_{Mt}(K_{it},L_{it}, M_{it}){\hat{\varLambda }})-lns_{M,it}\). That is

    $$\begin{aligned} \eta _t^* = {\hat{\eta }}_t v_t, \end{aligned}$$

    where the external random variable \(v_t\) is i.i.d. (0, 1) over t.

  2. 2.

    Estimate Eq. (2.9) with \(lns_{M,it}\) replaced with \(lns_{M,it}^*\) to obtain the bootstrapped \({\hat{\beta }}_{Mt}^*\).

  3. 3.

    Let

    $$\begin{aligned} {\mathscr {Y}}_{t}^*= & {} -{\hat{\phi }}_t(K_{t}, L_{t})+{\hat{\psi }}_t(K_{t-1}, L_{t-1}, M_{t-1}, z_{t-1})\nonumber \\&+\,{\hat{\lambda }}'{\bar{z}}_{-,t-1}+ {\hat{\gamma }} {\hat{f}}_{t-1} + \xi _{t}^*, \end{aligned}$$
    (A.2)

    where \(\xi _t^*\) is a wild bootstrap resampled version of \({\hat{\xi }}_t\), i.e., \(\xi _t^* = {\hat{\xi }}_t v_t\), and \({\hat{\xi }}_t = \hat{{\mathscr {Y}}}_{t} - \Big (-{\hat{\phi }}_t(K_{t}, L_{t}) + {\hat{\psi }}_t(K_{t-1}, L_{t-1}, M_{t-1}, z_{t-1})+{\hat{\lambda }}'{\bar{z}}_{-,t-1}+ {\hat{\gamma }} {\hat{f}}_{t-1}\Big )\).

  4. 4.

    Estimate Eq. (2.14) with \({\mathscr {Y}}_{it}\) replaced with \({\mathscr {Y}}_{it}^*\) to get the bootstrapped \({\hat{\lambda }}^*\), \({\hat{\phi }}_t^*(K_{it}, L_{it})\), and \({\hat{\psi }}_t^*(K_{it-1}, L_{it-1}, M_{it-1}, z_{it-1})\). Combined with Eq. (2.11), we have the bootstrapped \({\hat{F}}_t^*(K_{it},L_{it},M_{it})\).

  5. 5.

    Let \(\zeta _{it}^*={\mathscr {Y}}^*_{it}+{\hat{\phi }}_t^*(K_{it}, L_{it})-{\hat{\psi }}_t^*(K_{it-1}, L_{it-1}, M_{it-1}, z_{it-1})-{\hat{\lambda }}^{*\prime }{\bar{z}}_{-i,t-1}\). Estimate Eq. (2.17) using \(\zeta _{it}^*\) to have the bootstrapped \({\hat{\gamma }}_i^*\) and \({\hat{f}}_t^*\).

  6. 6.

    Last, we can use the conventional wild boostrap for \({\hat{u}}_{it}\) to get the standard error of \(\varphi \) based on the reduced form Eq. (3.11).

Appendix: A translog production function

In the main text, we do not assume a specific functional form for the production function and estimate the production technology semi/nonparametrically. One can however employ a parametric production function if certain parametric forms are desirable. Here, we show how to estimate our model when the widely used translog production function is assumed. Specifically, consider the following production function in logarithm, i.e.,

$$\begin{aligned} y_{it}&=lnT(k_{it}, l_{it}, m_{it})+\omega _{it}+\eta _{it}, \nonumber \\&=\beta _k k_{it} + \frac{1}{2}\beta _{kk}k_{it}^2 + \beta _l l_{it} + \frac{1}{2}\beta _{ll}l_{it}^2 + \beta _m m_{it} + \frac{1}{2}\beta _{mm}m_{it}^2\nonumber \\&\quad + \beta _{kl}k_{it}l_{it} + \beta _{km}k_{it}m_{it} + \beta _{lm}l_{it}m_{it} +\omega _{it}+\eta _{it}. \end{aligned}$$
(B.1)

Step one For the above translog production, the material elasticity is derived as \(\frac{\partial y_{it}}{\partial m_{it}} = \beta _m + \beta _{mm}m_{it} + \beta _{km}k_{it} + \beta _{lm}l_{it}\). Therefore, Eq. (2.9), the firm’s first-order condition with respect to \(M_{it}\), now takes the following form:

$$\begin{aligned} lns_{M,it} = ln\left( [\beta _m + \beta _{mm}m_{it} + \beta _{km}k_{it} + \beta _{lm}l_{it}]\varLambda \right) - \eta _{it}. \end{aligned}$$
(B.2)

Estimating Eq. (B.2) using NLS gives estimates of all the coefficients related to \(m_{it}\) in the translog function.

Step two Define \({\mathscr {Y}}_{it} = y_{it} - \beta _m m_{it} - \frac{1}{2}\beta _{mm}m_{it}^2 - \beta _{km}k_{it}m_{it} - \beta _{lm}l_{it}m_{it} - \eta _{it}\). We can then rewrite the production function as

$$\begin{aligned} {\mathscr {Y}}&= \beta _k k_{it} + \frac{1}{2}\beta _{kk}k_{it}^2 + \beta _l l_{it} + \frac{1}{2}\beta _{ll}l_{it}^2 + \beta _{kl}k_{it}l_{it} +\omega _{it}, \nonumber \\&=\beta _k k_{it} + \frac{1}{2}\beta _{kk}k_{it}^2 + \beta _l l_{it} + \frac{1}{2}\beta _{ll}l_{it}^2 \nonumber \\&\quad + \beta _{kl}k_{it}l_{it}+g(\omega _{it-1}, z_{it-1}) +\lambda '{\bar{z}}_{-i,t-1}+\gamma _i' f_{t-1} + \xi _{it}, \nonumber \\&=\beta _k k_{it} + \frac{1}{2}\beta _{kk}k_{it}^2 + \beta _l l_{it} + \frac{1}{2}\beta _{ll}l_{it}^2 \nonumber \\&\quad + \beta _{kl}k_{it}l_{it}+\psi _t(k_{it-1}, l_{it-1}, m_{it-1}, z_{it-1})+\lambda '{\bar{z}}_{-i,t-1}+ \gamma _i' f_{t-1} + \xi _{it}, \end{aligned}$$
(B.3)

where the second equality is derived using the Markov process assumption of \(\omega _{it}\), and the third equality is derived using the inverse material demand function. Similar derivations are employed in the main text to get Eq. (2.14). The above equation is a semiparametric partially linear regression model with an unobserved factor structure \(\gamma _i'f_t\), in which \(\psi _t(\cdot )\) is to be estimated nonparametrically. Following Su and ** (2012), we can estimate all other parameters in the production function, \(\lambda \), and \(\psi _t(\cdot )\) by using the cross-sectional averages of inputs as proxies of \(f_t\) and approximating \(\psi _t(\cdot )\) with polynomial bases.

After estimating the translog production function, we can follow the same steps as in the main text to estimate the factor structure (\(\gamma _i'f_t\)) and the spatial dependence parameter (\(\varphi \)) in Eq. (3.12).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., **, M. & Kumbhakar, S.C. Estimation of firm productivity in the presence of spillovers and common shocks. Empir Econ 60, 3135–3170 (2021). https://doi.org/10.1007/s00181-020-01922-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-020-01922-3

Keywords

JEL Classification

Navigation