Log in

An effective method for identifying clusters of robot strengths

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In the analysis of qualification stage data from FIRST Robotics Competition (FRC) championships, the ratio (1.67–1.68) of the number of observations (110–114 matches) to the number of parameters (66–68 robots) in each division has been found to be quite small for the most commonly used winning margin power rating (WMPR) model. This usually leads to imprecise estimates and inaccurate predictions in such three-on-three matches that FRC tournaments are composed of. With the recognition of a clustering feature in estimated robot strengths, a more flexible model with latent clusters of robots was proposed to alleviate overparameterization of the WMPR model. Since its structure can be regarded as a dimension reduction of the parameter space in the WMPR model, the identification of clusters of robot strengths is naturally transformed into a model selection problem. Instead of comparing a huge number of competing models \((7.76\times 10^{67}\) to \(3.66\times 10^{70})\), we develop an effective method to estimate the number of clusters, clusters of robots and robot strengths in the format of qualification stage data from the FRC championships. The new method consists of two parts: (i) a combination of hierarchical and non-hierarchical classifications to determine candidate models; and (ii) variant goodness-of-fit criteria to select optimal models. In contrast to existing hierarchical classification, each step of our proposed non-hierarchical classification is based on estimated robot strengths from a candidate model in the preceding non-hierarchical classification step. A great advantage of the proposed methodology is its ability to consider the possibility of reassigning robots to other clusters. To reduce overestimation of the number of clusters by the mean squared prediction error criteria, corresponding Bayesian information criteria are further established as alternatives for model selection. With a coherent assembly of these essential elements, a systematic procedure is presented to perform the estimation of parameters. In addition, we propose two indices to measure the nested relation between clusters from any two models and monotonic association between robot strengths from any two models. Data from the 2018 and 2019 FRC championships and a simulation study are also used to illustrate the applicability and superiority of our proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: FIRST (2019)

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

Chin-Tsang Chiang’s research was partially supported by the National Science and Technology Council grant 109-2118-M-002-002-MY2 (Taiwan). The authors would like to thank Alejandro Lim, who introduced us to the original version of this research problem and co-authored Lim et al. (2021) with the first two authors. We also thank the editor and a reviewer for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Tsang Chiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 99 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, JC., Chiang, CT. & Lim, A. An effective method for identifying clusters of robot strengths. Comput Stat (2023). https://doi.org/10.1007/s00180-023-01442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00180-023-01442-5

Keywords

Navigation