Log in

Efficient particle smoothing for Bayesian inference in dynamic survival models

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This article proposes an efficient Bayesian inference for piecewise exponential hazard (PEH) models, which allow the effect of a covariate on the survival time to vary over time. The proposed inference methodology is based on a particle smoothing algorithm that depends on three particle filters. Efficient proposal (importance) distributions for the particle filters tailored to the nature of survival data and PEH models are developed using the Laplace approximation of the posterior distribution and linear Bayes theory. The algorithm is applied to both simulated and real data, and the results show that it is faster and more efficient than a state-of-the-art MCMC sampler, and scales well in high-dimensional and relatively large data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  • Briers M, Doucet A, Maskell S (2010) Smoothing algorithms for state-space models. Ann Inst Stat Math 62(1):61–89

    Article  MathSciNet  Google Scholar 

  • Burke K, MacKenzie G (2017) Multi-parameter regression survival modeling: an alternative to proportional hazards. Biometrics 73(2):678–686

    Article  MathSciNet  Google Scholar 

  • Carpenter J, Clifford P, Fearnhead P (1999) Improved particle filter for nonlinear problems. IEE Proc Radar Sonar Navig 146(1):2–7

    Article  Google Scholar 

  • Cox RD (1972) Regression models and life tables (with discussion). J R Stat Soc 34:187–220

    MATH  Google Scholar 

  • Das S, Dey DK (2013) On dynamic generalized linear models with applications. Methodol Comput Appl Prob 15(2):407–421

  • Di Crescenzo A, Longobardi M (2004) A measure of discrimination between past lifetime distributions. Stat Prob Lett 67(2):173–182

    Article  MathSciNet  Google Scholar 

  • Doucet A, De Freitas N, Gordon N (2001) An introduction to sequential Monte Carlo methods. In: Sequential Monte Carlo methods in practice. Springer, pp 3–14

  • Doucet A, Godsill S, Andrieu C (2000) On sequential Monte Carlo sampling methods for Bayesian filtering. Stat Comput 10(3):197–208

    Article  Google Scholar 

  • Fahrmeir L (1994) Dynamic modelling and penalized likelihood estimation for discrete time survival data. Biometrika 81(2):317–330

    Article  Google Scholar 

  • Fahrmeir L, Kneib T (2011) Bayesian smoothing and regression for longitudinal, spatial and event history data. Oxford University Press, New York

    Book  Google Scholar 

  • Fahrmeir L, Wagenpfeil S (1996) Smoothing hazard functions and time-varying effects in discrete duration and competing risks models. J Am Stat Assoc 91(436):1584–1594

    Article  MathSciNet  Google Scholar 

  • Fearnhead P, Wyncoll D, Tawn J (2010) A sequential smoothing algorithm with linear computational cost. Biometrika 97(2):447–464

    Article  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter S (1994) Data augmentation and dynamic linear models. J Time Ser Anal 15(2):183–202

    Article  MathSciNet  Google Scholar 

  • Gamerman D (1991) Dynamic Bayesian models for survival data. Appl Stat 40:63–79

    Article  Google Scholar 

  • Gamerman D (1998) Markov Chain Monte Carlo for dynamic generalised linear models. Biometrika 85(1):215–227

    Article  MathSciNet  Google Scholar 

  • Gelman A, Hwang J, Vehtari A (2014) Understanding predictive information criteria for Bayesian models. Stat Comput 24(6):997–1016

    Article  MathSciNet  Google Scholar 

  • Geweke J (1989) Bayesian inference in econometric models using Monte Carlo integration. Econom J Econom Soc 57:1317–1339

    MathSciNet  MATH  Google Scholar 

  • Gordon NJ, Salmond DJ, Smith AF (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEE Proceedings F (Radar and Signal Processing), IET, vol 140, pp 107–113

  • Hemming K, Shaw J (2002) A parametric dynamic survival model applied to breast cancer survival times. J R Stat Soc Ser C (Applied Statistics) 51(4):421–435

    Article  MathSciNet  Google Scholar 

  • Jensen G, Torp-Pedersen C, Hildebrandt P, Kober L, Nielsen F, Melchior T, Joen T, Andersen P (1997) Does in-hospital ventricular fibrillation affect prognosis after myocardial infarction? Eur Heart J 18(6):919–924

    Article  Google Scholar 

  • Murray TA, Hobbs BP, Sargent DJ, Carlin BP (2016) Flexible Bayesian survival modeling with semiparametric time-dependent and shape-restricted covariate effects. Bayesian Anal 11(2):381

    Article  MathSciNet  Google Scholar 

  • Pitt MK, Shephard N (1999) Filtering via simulation: auxiliary particle filters. J Am Stat Assoc 94(446):590–599

    Article  MathSciNet  Google Scholar 

  • Sargent DJ (1997) A flexible approach to time-varying coefficients in the Cox regression setting. Lifetime Data Anal 3(1):13–25

    Article  MathSciNet  Google Scholar 

  • Scheike T (2009) Timereg: timereg package for flexible regression models for survival data. R package version 1.2-4

  • Villani M, Kohn R, Nott DJ (2012) Generalized smooth finite mixtures. J Econom 171(2):121–133

    Article  MathSciNet  Google Scholar 

  • Wagner H (2011) Bayesian estimation and stochastic model specification search for dynamic survival models. Stat Comput 21(2):231–246

    Article  MathSciNet  Google Scholar 

  • West M, Harrison PJ, Migon HS (1985) Dynamic generalized linear models and Bayesian forecasting. J Am Stat Assoc 80(389):73–83

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Mattias Villani, Gebrenegus Ghilagaber and Kevin Bruke for their constructive comments, and Helga Wagner for sharing the code for the auxiliary mixture sampler approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parfait Munezero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Codes for the article available at: https://github.com/Pmune/PSLiB

Details on the approximation of the posterior moments of the linear predictor

Details on the approximation of the posterior moments of the linear predictor

Given the structure of the likelihood (6), the model parameter \(\uplambda _{j}\) has a conjugate \(\text {Gamma}(\alpha _{j},\psi _{j})\) prior distribution, which implies that the marginal posterior of \(\uplambda _{j}\) is \(\text {Gamma}(\alpha _{j}+d_{j},\psi _{j}+t_{j})\). Taking into account the Jacobian of the transformation \(\eta _{j}=\ln \uplambda _{j}\), it can be shown that

$$\begin{aligned} p\left( \eta _{j}|\varvec{\beta }_{j-1},{\mathbf {t}}_{1:j}\right) \propto \exp \left\{ \eta _{j}\left( \alpha _{j}+d_{j}\right) -\left( \psi _{j}+t_{j}\right) \exp \left\{ \eta _{j}\right\} \right\} , \end{aligned}$$
(27)

where \({\mathbf {t}}_{1:i,j}\) is the set of exposure times for the first i individuals observed in the interval \(I_{j}\). In order to apply the conditional expectations (21), we need to compute the first and second derivatives of the log of (27)

$$\begin{aligned} \dfrac{\partial \ln p\left( \eta _{j}|\varvec{\beta }_{j-1},{\mathbf {t}}_{1:j}\right) }{\partial \eta _{j}}=\alpha _{j}+d_{j}-\left( \psi _{j}+t_{j}\right) \exp \left\{ \eta _{j}\right\} , \end{aligned}$$

and

$$\begin{aligned} \dfrac{\partial ^{2}\ln p\left( \eta _{j}|\varvec{\beta }_{j-1},{\mathbf {t}}_{1:j}\right) }{\partial \eta _{j}^{2}}=-\left( \psi _{j}+t_{j}\right) \exp \left\{ \eta _{j}\right\} . \end{aligned}$$

From the first derivative, one can show that the mode lies at \(\hat{\eta _{j}}=\ln (\frac{\alpha _{j}+d_{j}}{\psi _{j}+t_{j}})\), which lead to the final expressions

$$\begin{aligned} E[\eta _{j}|\varvec{\beta }_{j-1},{\mathbf {t}}_{j}]&=\left. \dfrac{\partial \ln p\left( \eta _{j}|\varvec{\beta }_{j-1},{\mathbf {t}}_{1:j}\right) }{\partial \eta _{j}}\right| _{\eta _{j}=\hat{\eta _{j}}}=\ln \left( \frac{\alpha _{j}+d_{j}}{\psi _{j}+t_{j}}\right) ,\\ V[\eta _{j}|\varvec{\beta }_{j-1},{\mathbf {t}}_{j}]&=\left. \dfrac{\partial ^{2}\ln p\left( \eta _{j}|\varvec{\beta }_{j-1},{\mathbf {t}}_{1:j}\right) }{\partial \eta _{j}^{2}}\right| _{\eta _{j}=\hat{\eta _{j}}}^{-1}=\frac{1}{\alpha _{j}+d_{j}} \end{aligned}$$

The hyper-parameters \(\alpha _{j}\) and \(\psi _{j}\) are selected in order to match the true moments of the prior with the moments from the deterministic relationship \(\eta _{j}={\mathbf {z}}^{\prime }\varvec{\beta }_{j-1}\). This is accomplished by setting \(\ln \alpha _{j}-\ln \psi _{j}={\mathbf {z}}^{\prime }\varvec{\beta }_{j-1}\) and \(\alpha _{j}^{-1}=Q_{j}\); hence \(\psi _{j}=Q_{j}^{-1}\exp \{-{\mathbf {z}}_{i}^{\prime }\varvec{\beta }_{j-1}\}\), which proves the moments of the proposal q described in Sect. 3.3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munezero, P. Efficient particle smoothing for Bayesian inference in dynamic survival models. Comput Stat 37, 975–994 (2022). https://doi.org/10.1007/s00180-021-01155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-021-01155-7

Keywords

Navigation