Log in

Stability analyses of compressible flat plate boundary layer flow over a mechanically compliant wall

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Sustained flight at hypersonic speeds is characterized by high pressure and aerothermal loads imposed on the structure of the aerodynamic vehicle. A consequence of lightening the structural design permits fluid–structure interaction phenomena that can significantly alter the flow and initiate unsteady structural responses. We investigate the coupling between high-speed laminar boundary layer flows over a mechanically compliant panel and analyze the dynamic system response of the coupled system to boundary layer instabilities by means of local convective linear stability analysis. The resulting non-dimensional interaction parameters describing the compliant system are shown to affect the boundary layer instabilities in the infinitely thin panel limit, and the transition from the rigid limit is described by two distinctly different responses: (a) a piston-like, one-dimensional panel deflection, or (b) a synchronization with flexural waves. Compliance is shown to non-monotonically change convective wave growth rates and induce uncertainty in the integrated N-factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gray, J.: Studies in animal locomotion: VI. The propulsive powers of the dolphin. J. Exp. Biol. 13(2), 192–199 (1936)

  2. Kramer, M.O.: Boundary layer stabilization by distributed dam**. J. Am. Soc. Nav. Eng. 72(1), 25–34 (1960)

    Google Scholar 

  3. Benjamin, T.B.: Effects of a flexible boundary on hydrodynamic stability. J. Fluid Mech. 9(4), 513–532 (1960)

    Article  MathSciNet  Google Scholar 

  4. Landahl, M.T.: On the stability of a laminar incompressible boundary layer over a flexible surface. J. Fluid Mech. 13(4), 609–632 (1962)

    Article  Google Scholar 

  5. Benjamin, T.B.: The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows. J. Fluid Mech. 16(3), 436–450 (1963)

    Article  Google Scholar 

  6. Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien–Schlichting instabilities. J. Fluid Mech. 155, 465–510 (1985)

  7. Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech. 170, 199–232 (1986)

  8. Davies, C., Carpenter, P.W.: Instabilities in a plane channel flow between compliant walls. J. Fluid Mech. 352, 205–243 (1997)

  9. Malik, M., Skote, M., Bouffanais, R.: Growth mechanisms of perturbations in boundary layers over a compliant wall. Phys. Rev. Fluids 3(1), 013903 (2018)

  10. Dugundji, J: Theoretical considerations of panel flutter at high supersonic mach numbers. AIAA J. 4(7), 1257–1266 (1966)

  11. Eirikur J., Cristina R., Christopher A.L., Carlos E.S.C., Joaquim R.R.A.M., Bogdan I.: Epureanu. Flutter and post-flutter constraints in aircraft design optimization. Prog. Aerosp. Sci. (2019)

  12. Dowell, E.H., Hall, K.C.: Modeling of fluid-structure interaction. Annu. Rev. Fluid Mech. 33(1), 445–490 (2001)

  13. Salvatore, L., George, T.: Identification of knowledge gaps in the predictive capability for response and life prediction of hypersonic vehicle structures. In: 52nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 19th AIAA/ASME/AHS adaptive structures conference 13t, p. 1961 (2011)

  14. Brian, Z., Shelby, H., Macguire, J., McAuliffe, P.: Investigation of shortfalls in hypersonic vehicle structure combined environment analysis capability. In: 52nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 19th AIAA/ASME/AHS adaptive structures conference 13t, p. 2013 (2011)

  15. Bondarev, V., Vedeneev, V.: Short-wave instability of an elastic plate in supersonic flow in the presence of the boundary layer. J. Fluid Mech. 802, 528–552 (2016)

  16. Sucheendran, M.M., Bodony, D.J., Geubelle, P.H.: Coupled structural-acoustic response of a duct-mounted elastic plate with grazing flow. AIAA J. 52(1), 178–194 (2013)

  17. Bountin, D., Chimitov, T., Maslov, A., Novikov, A., Egorov, I., Fedorov, A., Utyuzhnikov, S.: Stabilization of a hypersonic boundary layer using a wavy surface. AIAA J. 51(5), 1203–1210 (2013)

  18. Zachary, B.R., Jack, J.M.: Interaction between aerothermally compliant structures and boundary layer transition in hypersonic flow. In: 15th Dynamics Specialists Conference, p. 1087 (2016)

  19. Ostoich, C.M., Bodony, D.J., Geubelle, P.H.: Interaction of a Mach 2.25 turbulent boundary layer with a fluttering panel using direct numerical simulation. Phys. Fluids 25(11), 110806 (2013)

  20. Huang, D., Friedmann, P.P.: An aerothermoelastic analysis framework with reduced-order modeling applied to composite panels in hypersonic flows. J. Fluids Struct. 94, 102927 (2020)

  21. Boyer, N.R., McNamara, J.J., Gaitonde, D.V., Barnes, C.J., Visbal, M.R.: Features of panel flutter response to shock boundary layer interactions. J. Fluids Struct. 101, 103207 (2021)

  22. Freydin, M., Dowell, E.H., Whalen, T.J., Laurence, S.J.: A theoretical computational model of a plate in hypersonic flow. J. Fluids Struct. 93, 102858 (2020)

  23. Malik, M.R.: Numerical methods for hypersonic boundary layer stability. J. Comput. Phys.86(2), 376–413 (1990)

  24. Mack, L.M.: Special course on stability and transition of laminar flow. AGARD Report, 709 (1984)

  25. Malik, M.R.: Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA J. 27(11), 1487–1493 (1989)

  26. Fasel, H., Konzelmann, U.: Non-parallel stability of a flat-plate boundary layer using the complete Navier–Stokes equations. J. Fluid Mech. 221, 311–347 (1990)

    Article  Google Scholar 

  27. Hanifi, A., Henningson, D., Hein, S., Bertolotti, F.P., Simen, M.: Linear nonlocal instability analysis—the linear Nolot code. FFA TN 54, 1994 (1994)

    Google Scholar 

  28. Marxen, O., Iaccarino, G., Shaqfeh, E.S.G.: Disturbance evolution in a mach 4.8 boundary layer with two-dimensional roughness-induced separation and shock. J. Fluid Mech. 648, 435–469 (2010)

  29. Dowell, E.H.: A Modern Course in Aeroelasticity. Springer, Berlin (2015)

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-18-1-0035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Bodony.

Additional information

Communicated by Pino Martin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Eigenvalue problem

Eigenvalue problem

The quadratic eigenvalue problem described in Eq. 5 can be rewritten as a first-order system following

$$\begin{aligned} \begin{bmatrix} L^1 &{}\quad L^0 \\ I &{}\quad 0 \end{bmatrix} {\hat{z}}= \alpha \begin{bmatrix} -L^2 &{}\quad 0\\ 0 &{}\quad I \end{bmatrix} {\hat{z}} \quad \text {with} \quad {\hat{z}} = \begin{bmatrix} \alpha {\hat{q}}\\ {\hat{q}} \end{bmatrix}, \end{aligned}$$
(18)

where I denotes the identity matrix and 0 is a zero matrix. Similarly, the quartic eigenvalue problem for the compliant system can be rewritten as a first-order system following

$$\begin{aligned} \begin{bmatrix} L^1 &{}\quad L^0 &{}\quad L_2 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad I\\ 0 &{}\quad 0 &{}\quad I &{}\quad 0 \\ I &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{bmatrix} {\hat{z}} = \alpha \begin{bmatrix} 0 &{}\quad 0 &{}\quad 0 &{}\quad -L_4\\ 0 &{}\quad 0 &{}\quad I &{}\quad 0 \\ I &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad I &{}\quad 0 &{}\quad 0\\ \end{bmatrix} {\hat{z}} \quad \text {with} \quad {\hat{z}}=\begin{bmatrix} \alpha {\hat{q}}\\ {\hat{q}} \\ \alpha ^2 {\hat{q}} \\ \alpha ^3 {\hat{q}} \end{bmatrix}. \end{aligned}$$
(19)

The components to the submatrices \([L^0,L^1,L^2,L^4]\) follow the pattern

$$\begin{aligned} L^i = \begin{bmatrix} L^i_{11} &{}\quad L^i_{12} &{}\quad L^i_{13} &{}\quad L^i_{14} &{}\quad L^i_{15}\\ L^i_{21} &{}\quad L^i_{22} &{}\quad L^i_{23} &{}\quad L^i_{24} &{}\quad L^i_{25}\\ L^i_{31} &{}\quad L^i_{32} &{}\quad L^i_{33} &{}\quad L^i_{34} &{}\quad L^i_{35}\\ L^i_{41} &{}\quad L^i_{42} &{}\quad L^i_{43} &{}\quad L^i_{44} &{}\quad L^i_{45}\\ L^i_{51} &{}\quad L^i_{52} &{}\quad L^i_{53} &{}\quad L^i_{54} &{} \quad L^i_{55}\\ \end{bmatrix} \end{aligned}$$
(20)

with the following nonzero components:

$$\begin{aligned} L^0_{11}&= D_2 + \frac{1}{\mu } \frac{\partial \mu }{\partial T} \frac{\partial T}{\partial T} D_1 - i \left( \beta W - \omega \right) \frac{{{Re}}}{\mu T} -\beta ^2 \\ L^0_{12}&= -\frac{{{Re}}}{\mu T} \frac{\partial U}{\partial y} \\ L^0_{14}&= \frac{1}{\mu } \frac{\partial \mu }{\partial y} \frac{\partial U}{\partial y} D_1 + \frac{1}{\mu } \frac{\partial \mu }{\partial T} \frac{\partial ^2 U}{\partial y^2} + \frac{1}{\mu } \frac{\partial ^2 \mu }{\partial y^2} \frac{\partial T}{\partial y} \frac{\partial U}{\partial y} \\ L^0_{22}&= D_2 + \frac{1}{\mu }\frac{\partial \mu }{\partial T} \frac{\partial T}{\partial y} D_1-i \left( \beta W -\omega \right) \frac{{{Re}}}{l_2 \mu T} - \frac{\beta }{l_2} \\ L^0_{23}&= \frac{{{Re}}}{l_2 \mu } D_1 \\ L^0_{24}&= \frac{i}{l_2 \mu } \frac{\partial \mu }{\partial T} \frac{\partial U}{\partial y} \\ L^0_{25}&= i \beta \frac{l_1}{l_2} D_1 + i \beta \frac{l_0}{l_2 \mu } \frac{\partial \mu }{\partial T} \frac{\partial T}{\partial y} \\ L^0_{32}&= D_1 - \frac{1}{T} \frac{\partial T}{\partial y} \\ L^0_{33}&= i \gamma M^2 \left( \beta W - \omega \right) \\ L^0_{34}&= -\frac{i}{T} \left( \beta W -\omega \right) \\ L^0_{35}&= i \beta \\ L^0_{41}&= 2 {{Pr}}\gamma M^2 \frac{\partial U}{\partial y} D_1 \\ L^0_{42}&= 2 i \left( \gamma -1\right) M^2 Pr \beta \frac{\partial W}{\partial y} - \frac{{{Pr}}{{Re}}}{\mu T} \frac{\partial T}{\partial y} \\ L^0_{43}&= i \left( \beta W -\omega \right) \left( \gamma -1\right) M^2 \frac{{{Pr}}{{Re}}}{\mu } \\ L^0_{44}&= D_2 + \frac{2}{k} \frac{\partial k}{\partial y} D_1 -i \left( \beta W -\omega \right) \frac{{{Pr}}{{Re}}}{\mu T} + \left( \gamma -1 \right) \frac{{{Pr}}}{\mu } \frac{\partial \mu }{\partial y} \left[ \left( \frac{\partial U}{\partial y} \right) ^2 + \left( \frac{\partial W}{\partial y} \right) ^2 \right] \\&\quad + \frac{1}{k} \frac{\partial ^2 k}{\partial y^2} - \beta ^2 \\ L^0_{45}&= 2 {{Pr}}\left( \gamma -1 \right) M^2 \frac{\partial W}{\partial y} D_1 \\ L^0_{52}&= i \beta l_1 D_1 + i \frac{\beta }{\mu } \frac{\partial \mu }{\partial y} \frac{\partial T}{\partial y} - \frac{{{Re}}}{\mu T} \frac{\partial W}{\partial y} \\ L^0_{53}&= -i \beta \frac{Re}{mu} \\ L^0_{54}&= \frac{1}{\mu } \frac{\partial \mu }{\partial T} \frac{\partial W}{\partial y} D_1 + \frac{1}{\mu } \frac{\partial \mu }{\partial T} \frac{\partial ^2 W}{\partial y^2} + \frac{1}{\mu } \frac{\partial ^2 \mu }{\partial T^2} \frac{\partial T}{\partial y} \frac{\partial W}{\partial y} \\ L^0_{55}&= D_2 + \frac{1}{\mu } \frac{\partial \mu }{\partial T} \frac{\partial T}{\partial y} D_1 -i \left( \beta W -\omega \right) \frac{{{Re}}}{\mu T} - l_2 \beta ^2 \\ L^1_{11}&= -i U \frac{{{Re}}}{\mu T} \\ L^1_{12}&= i l_1 D_1 + \frac{i}{\mu } \frac{\partial \mu }{\partial T} \frac{\partial T}{\partial y} \\ L^1_{13}&= -i \frac{Re}{\mu } \\ L^1_{15}&= -\beta l_1 \\ L^1_{21}&= i \frac{l_1}{l_2} D_1 + \frac{i}{\mu } \frac{\partial \mu }{\partial T} \frac{\partial T}{\partial y} \frac{l_0}{l_2} \\ L^1_{22}&= -i U \frac{{{Re}}}{l_2 \mu T} \\ L^1_{24}&= -i U \frac{{{Re}}}{l_2 \mu T} \\ L^1_{31}&= i \\ L^1_{33}&= i \gamma M^2 U \\ L^1_{34}&= -i \frac{U}{T}\\ L^1_{42}&= 2 i \left( \gamma -1\right) M^2 {{Pr}}\frac{\partial U}{\partial y} \\ L^1_{43}&= i \left( \gamma -1\right) M^2 \frac{{{Pr}}{{Re}}}{\mu } \\ L^1_{44}&= -i U \frac{{{Pr}}{{Re}}}{\mu T} \\ L^1_{51}&= -\beta l_1 \\ L^1_{55}&= -i U \frac{{{Re}}}{\mu T} \\ L^2_{11}&= \frac{i}{\mu } \frac{\partial \mu }{\partial T} \frac{\partial T}{\partial y} \frac{l_0}{l_2} \\ L^2_{22}&= - \frac{1}{l_2} \\ L^2_{44}&= -1 \\ L^2_{55}&= -1, \end{aligned}$$

where \(D_1\) and \(D_2\) denote the discrete first and second derivative operator with respect to wall-normal coordinate y and \(l_i = i + k/\mu \). These submatrices arise from sorting the governing perturbation equations (Eqs. 13 in conjunction with the perturbation ansatz Eq. 4) in the following order:

$$\begin{aligned} \begin{bmatrix} \text {continuity} \\ \text {x-momentum equation} \\ \text {y-momentum equation} \\ \text {z-momentum equation} \\ \text {energy equation} \\ \end{bmatrix} \end{aligned}$$
(21)

In terms of the boundary conditions of the rigid system, we enforce \([{\hat{u}}_w, {\hat{u}}_{\infty }]=0\) in the x-momentum equation, \([{\hat{v}}_w, {\hat{v}}_{\infty }]=0\) in the y-momentum equation, \([{\hat{w}}_w, {\hat{w}}_{\infty }]=0\) in the z-momentum equation, and \([{\hat{T}}_w, {\hat{T}}_{\infty }]=0\) in the energy equation. For the compliant system, we substitute \([{\hat{v}}_w, {\hat{v}}_{\infty }]=0\) with Eq. 10, which changes the following components of above submatrices \(L^i\) at the wall:

$$\begin{aligned} L^0_{22}&= \omega ^2 + i \beta ^4 \mu \phi \\ L^0_{23}&= \omega \\ L^2_{22}&= 2 i \beta ^2 \mu \phi \\ L^4_{22}&= i \mu \phi .\\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dettenrieder, F., Bodony, D.J. Stability analyses of compressible flat plate boundary layer flow over a mechanically compliant wall. Theor. Comput. Fluid Dyn. 36, 141–153 (2022). https://doi.org/10.1007/s00162-021-00600-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-021-00600-z

Keywords

Navigation