Log in

Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding.

Abstract

The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Asea G, Vivek BS, Bigirwa G, Lipps PE, Pratt RC (2009) Validation of consensus quantitative trait loci associated with resistance to multiple foliar pathogens of maize. Phytopathology® 99:540–547

    Article  CAS  PubMed  Google Scholar 

  • Balint-Kurti PJ, Wisser R, Zwonitzer JC (2008) Use of an advanced intercross line population for precise map** of quantitative trait loci for gray leaf spot resistance in maize. Crop Sci 48:1696–1704

    Article  Google Scholar 

  • Benson JM, Poland JA, Benson BM, Stromberg EL, Nelson RJ (2015) Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association map** and near-isogenic line analysis. PLoS Genet 11:e1005045

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger DK, Carstens M, Korsman JN, Middleton F, Kloppers FJ et al (2014) Map** QTL conferring resistance in maize to gray leaf spot disease caused by Cercospora zeina. BMC Genet 15:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatia A, Munkvold GP (2002) Relationships of environmental and cultural factors with severity of gray leaf spot in maize. Plant Dis 86:1127–1133

    Article  PubMed  Google Scholar 

  • Bluhm BH, Dhillon B, Lindquist EA, Kema GHJ, Goodwin SB et al (2008) Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth. BMC Genomics 9:523

    Article  PubMed  PubMed Central  Google Scholar 

  • Broman KW, Gatti DM, Simecek P, Furlotte NA, Prins P et al (2019) R/qtl2: software for map** quantitative trait loci with high-dimensional data and multiparent populations. Genetics 211:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bubeck DM, Goodman MM, Beavis WD, Grant D (1993) Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Sci 33:838

    Article  Google Scholar 

  • Carson ML, Goodman MM, Williamson SM (2002) Variation in aggressiveness among isolates of Cercospora from maize as a potential cause of genotype-environment interaction in gray leaf spot trials. Plant Dis 86:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang Z, Tan K, Huang W, Shi J et al (2023) A complete telomere-to-telomere assembly of the maize genome. Nat Genet 55:1221–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Liu L, Li Z, Zhang Y, Kang MS et al (2021) High-density map** for gray leaf spot resistance using two related tropical maize recombinant inbred line populations. Mol Biol Rep 48:3379–3392

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  • Christie N, Myburg AA, Joubert F, Murray SL, Carstens M et al (2017) Systems genetics reveals a transcriptional network associated with susceptibility in the maize–grey leaf spot pathosystem. Plant J 89:746–763

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait map**. Genetics 138:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements MJ, Dudley JW, White DG (2000) Quantitative trait loci associated with resistance to gray leaf spot of corn. Phytopathology® 90:1018–1025

    Article  CAS  PubMed  Google Scholar 

  • Coates ST, White DG (1998) Inheritance of resistance to gray leaf spot in crosses involving selected resistant inbred lines of corn. Phytopathology® 88:972–982

    Article  CAS  PubMed  Google Scholar 

  • Dai W, Li Q, Liu T, Long P, He Y et al (2024a) Combining genome-wide association study and linkage map** in the genetic dissection of amylose content in maize (Zea mays L.). Theor Appl Genet 137:159

    Article  CAS  PubMed  Google Scholar 

  • Dai W, Yu H, Liu K, Chengxu Y, Yan J et al (2023) Combined linkage map** and association analysis uncovers candidate genes for 25 leaf-related traits across three environments in maize. Theor Appl Genet 136:12

    Article  PubMed  Google Scholar 

  • Dai Z, Pi Q, Liu Y, Hu L, Li B et al (2024b) ZmWAK02 encoding an RD-WAK protein confers maize resistance against gray leaf spot. New Phytol 241:1780–1793

    Article  CAS  PubMed  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Du L, Yu F, Zhang H, Wang B, Ma K et al (2020) Genetic map** of quantitative trait loci and a major locus for resistance to grey leaf spot in maize. Theor Appl Genet 133:2521–2533

    Article  CAS  PubMed  Google Scholar 

  • Dunkle LD, Levy M (2000) Genetic relatedness of African and United States populations of Cercospora zeae-maydis. Phytopathology® 90:486–490

    Article  CAS  PubMed  Google Scholar 

  • Goodwin SB, Dunkle LD, Zismann VL (2001) Phylogenetic analysis of Cercospora and Mycosphaerella based on the internal transcribed spacer region of ribosomal DNA. Phytopathology® 91:648–658

    Article  CAS  PubMed  Google Scholar 

  • Gordon SG, Lipps PE, Pratt RC (2006) Heritability and components of resistance to Cercospora zeae-maydis derived from maize inbred VO613Y. Phytopathology® 96:593–598

    Article  PubMed  Google Scholar 

  • Gray J, Janick-Buckner D, Buckner B, Close PS, Johal GS (2002) Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol 130:1894–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Fiziev P, Yan W, Cokus S, Sun X et al (2013) BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics 14:774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Zhu Y, Leng Y, Yang L, Zhang B et al (2021) Transcriptomic analysis reveals candidate genes responding maize gray leaf spot caused by Cercospora zeina. Plants 10:2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hok S, Danchin EGJ, Allasia V, Panabières FA, ATTARD et al (2011) An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease. Plant Cell Environ 34:1944–1957

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Kuang T, Shaw RK, Zhang Y, Fan J et al (2024) Genetic dissection of resistance to gray leaf spot by genome-wide association study in a multi-parent maize population. BMC Plant Biol 24:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  CAS  PubMed  Google Scholar 

  • Kibe M, Nair SK, Das B, Bright JM, Makumbi D et al (2020) Genetic dissection of resistance to gray leaf spot by combining genome-wide association, linkage map**, and genomic prediction in tropical maize germplasm. Front Plant Sci. https://doi.org/10.3389/fpls.2020.572027

    Article  PubMed  PubMed Central  Google Scholar 

  • Komjanc M, Festi S, Rizzotti L, Cattivelli L, Cervone F et al (1999) A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus x domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Mol Biol 40:945–957

    Article  CAS  PubMed  Google Scholar 

  • Kuki MC, Scapim CA, Rossi ES, Mangolin CA, Amaral Júnior ATd et al (2018) Genome wide association study for gray leaf spot resistance in tropical maize core. PLoS ONE 13:e0199539

    Article  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennon JR, Krakowsky M, Goodman M, Flint-Garcia S, Balint-Kurti PJ (2016) Identification of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Sci 56:209–218

    Article  CAS  Google Scholar 

  • Lian J, Han H, Chen X, Chen Q, Zhao J et al (2022) Stemphylium lycopersici Nep1-like Protein (NLP) is a key virulence factor in tomato gray leaf spot disease. J Fungi (basel) 8:518

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, ** and genome-wide association study revealed the key gene for husk number in maize. Theor Appl Genet 137:112

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Niu Y, Gonzalez-Portilla PJ, Zhou H, Wang L et al (2015) An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize. BMC Genomics 16:1078

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Zhang YD, Li HY, Bi YQ, Yu LJ et al (2016) QTL map** for gray leaf spot resistance in a tropical maize population. Plant Dis 100:304–312

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Tan X, Yang Y, Liu P, Zhang X et al (2020) Analysis of the genetic architecture of maize kernel size traits by combined linkage and association map**. Plant Biotechnol J 18:207–221

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in U.S. Agric Yields Sci 299:1032–1032

    CAS  Google Scholar 

  • Lopez-Zuniga LO, Wolters P, Davis S, Weldekidan T, Kolkman JM et al (2019) Using maize chromosome segment substitution line populations for the identification of loci associated with multiple disease resistance. G3 Genes Genomes Genet 9:189–201

    Article  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahuku G, Chen J, Shrestha R, Narro LA, Guerrero KVO et al (2016) Combined linkage and association map** identifies a major QTL (qRtsc8-1), conferring tar spot complex resistance in maize. Theor Appl Genet 129:1217–1229

    Article  CAS  PubMed  Google Scholar 

  • Mammadov J, Sun X, Gao Y, Ochsenfeld C, Bakker E et al (2015) Combining powers of linkage and association map** for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.). BMC Genomics 16:916

    Article  PubMed  PubMed Central  Google Scholar 

  • Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL et al (2018) MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 14:e1005944

    Article  PubMed  PubMed Central  Google Scholar 

  • Maroof MAS, Yue YG, **ang ZX, Stromberg EL, Rufener GK (1996) Identification of quantitative trait loci controlling resistance to gray leaf spot disease in maize. Theor Appl Genet 93:539–546

    Article  CAS  PubMed  Google Scholar 

  • Martins LB, Rucker E, Thomason E, Wisser RJ, Holland JB et al (2019) Validation and characterization of maize multiple disease resistance QTL. G3 Genes Genomes Genet 9:2905–2912

    Article  CAS  Google Scholar 

  • Meyer J, Berger DK, Christensen SA, Murray SL (2017) RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina. BMC Plant Biol 17:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Mourtzinis S, Ortiz BV, Damianidis D (2016) Climate change and ENSO effects on Southeastern US climate patterns and maize yield. Sci Rep 6:29777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mourtzinis S, Specht JE, Lindsey LE, Wiebold WJ, Ross J et al (2015) Climate-induced reduction in US-wide soybean yields underpinned by region- and in-season-specific responses. Nat Plants 1:14026

    Article  PubMed  Google Scholar 

  • Nyquist WE, Baker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, Huijser P et al (2013) Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 9:e1003235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrin RM, DeRocher AE, Bar-Peled M, Zeng W, Norambuena L et al (1999) Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284:1976–1979

    Article  CAS  PubMed  Google Scholar 

  • Pozar G, Butruille D, Silva HD, McCuddin ZP, Penna JCV (2009) Map** and validation of quantitative trait loci for resistance to Cercospora zeae-maydis infection in tropical maize (Zea mays L.). Theor Appl Genet 118:553–564

    Article  CAS  PubMed  Google Scholar 

  • Qiu H, Li C, Yang W, Tan K, Yi Q et al (2021) Fine map** of a new major QTL-qGLS8 for gray leaf spot resistance in maize. Front Plant Sci. https://doi.org/10.3389/fpls.2021.743869

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shi L-Y, Li X-H, Hao Z-F, ** of resistance to gray leaf spot in maize based on bioinformatics. Agric Sci China 6:1411–1419

    Article  CAS  Google Scholar 

  • Shi L, Lv X, Weng J, Zhu H, Liu C et al (2014) Genetic characterization and linkage disequilibrium map** of resistance to gray leaf spot in maize (Zea mays L.). Crop J 2:132–143

    Article  Google Scholar 

  • Silva LDCE, Wang S, Zeng Z-B (2012) Composite interval map** and multiple interval map**: procedures and guidelines for using windows QTL cartographer. In: Rifkin SA (ed) Quantitative trait loci (QTL) methods protocol. Humana Press, NJ, pp 75–119

    Chapter  Google Scholar 

  • Sun S, Zhou Y, Chen J, Shi J, Zhao H et al (2018a) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Tehon LR, Daniels E (1925) Notes on the parasitic fungi of Illinois—II. Mycologia 17:240–249

    Article  Google Scholar 

  • Vontimitta V, Olukolu BA, Penning BW, Johal G, Balint-Kurti PJ (2015) The genetic basis of flecking and its relationship to disease resistance in the IBM maize map** population. Theor Appl Genet 128:2331–2339

    Article  PubMed  Google Scholar 

  • Wang H, Hou J, Ye P, Hu L, Huang J et al (2021) A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize. Mol Plant 14:1846–1863

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Levy M, Dunkle LD (1998) Sibling species of Cercospora associated with gray leaf spot of maize. Phytopathology® 88:1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Chen Z, Tian L, Ding Y, Zhang J et al (2019) Comparative proteomics combined with analyses of transgenic plants reveal ZmREM1.3 mediates maize resistance to southern corn rust. Plant Biotechnol J 17:2153–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welgemoed T, Pierneef R, Sterck L, Van de Peer Y, Swart V et al (2020) De novo assembly of transcriptomes from a B73 maize line introgressed with a QTL for resistance to gray leaf spot disease reveals a candidate allele of a lectin receptor-like kinase. Front Plant Sci 11:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhang Y, Shao S, Chen W, Tan J et al (2014) High-resolution map** and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot. BMC Plant Biol 14:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Wang X, Wang Y, Zhang H, Zhang H et al (2022) Combined QTL map** and RNA-Seq pro-filing reveal candidate genes related to low-temperature tolerance in maize. Mol Breed 42:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, He Y, Kabahuma M, Chaya T, Kelly A et al (2017) A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat Genet 49:1364–1372

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Shi J, Li X, Liu J, Geng Q et al (2018) Transcriptome analysis reveals the molecular mechanisms of the defense response to gray leaf spot disease in maize. BMC Genomics 19:742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan G, Li Y, He D, Shi J, Yang Y et al (2023) A Combination of QTL map** and gradedpool-seq to dissect genetic complexity for gibberella ear rot resistance in maize using an IBM Syn10 DH population. Plant Dis 107:1115–1121

    Article  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision map** of quantitative trait loci. Genetics 136:1457–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Guan Z, Li Z, Liu P, Ma L et al (2020) A combination of linkage map** and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theor Appl Genet 133:2881–2895

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yang Q, Rucker E, Thomason W, Balint-Kurti P (2017) Fine map** of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z. mays ssp. parviglumis). Theor Appl Genet 130:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu L, Fan X, Tan J, Chen W et al (2012) QTL map** of resistance to gray leaf spot in maize. Theor Appl Genet 125:1797–1808

    Article  PubMed  Google Scholar 

  • Zhong T, Zhu M, Zhang Q, Zhang Y, Deng S et al (2024) The ZmWAKL–ZmWIK–ZmBLK1–ZmRBOH4 module provides quantitative resistance to gray leaf spot in maize. Nat Genet. https://doi.org/10.1038/s41588-023-01644-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Zwonitzer JC, Coles ND, Krakowsky MD, Arellano C, Holland JB et al (2010) Map** resistance quantitative trait loci for three foliar diseases in a maize recombinant inbred line population—evidence for multiple disease resistance? Phytopathology® 100:72–795

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China to H. Liu (2022YFD1201700) and X. Li (2023YFD1401502), the Science and Technology Innovation 2030-Major Project to H. Liu (2023ZD04068), the National Natural Science Foundation of China to X. Yang (32101705), the Youth Innovation Team Project to X. Yang, the Earmarked Fund for CARS (CARS-02) to L. Cui and the Sichuan Science and Technology Program (2021YFYZ0021) to L. Cui.

Author information

Authors and Affiliations

Authors

Contributions

XL and XY designed and supervised the study. LC, MS, LZ, HZ, QK, LD, XL, XZ, YS, HZ, LD, WL, CZ, ZZ, WC, YM and HL performed the experiments. LC, MS, HZ, QK, XZ, HL, XY and XL analyzed the data. XL, HL, TL and XY prepared the manuscript and all the authors have read, and approved the final manuscript.

Corresponding authors

Correspondence to Xuerong Yang or **ao Li.

Ethics declarations

Competing interests

The authors have declared that no competing interests exist.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Additional information

Communicated by Mingliang Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Sun, M., Zhang, L. et al. Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population. Theor Appl Genet 137, 183 (2024). https://doi.org/10.1007/s00122-024-04694-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-024-04694-x

Navigation