Log in

Detection of two homologous major QTLs and development of diagnostic molecular markers for sucrose content in peanut

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We identified two stable and homologous major QTLs for sucrose content in peanut, and developed breeder-friendly molecular markers for marker-assisted selection breeding.

Abstract

Sucrose content is a crucial quality trait for edible peanuts, and increasing sucrose content is a key breeding objective. However, the genetic basis of sucrose content in peanut remains unclear, and major quantitative trait loci (QTLs) for sucrose content have yet to be identified. In this study, a high-density genetic map was constructed based on whole-genome re-sequencing data from a peanut RIL population. This map consisted of 2,042 bins and 24,142 SNP markers, making it one of the most comprehensive maps to date in terms of marker density. Two major QTLs (qSCA06.2 and qSCB06.2) were identified, explaining 31.41% and 24.13% of the phenotypic variance, respectively. Notably, these two QTLs were located in homologous genomic regions between the A and B subgenomes. The elite allele of qSCA06.2 was exclusive to Valencia-type, while the elite allele of qSCB06.2 existed in other peanut types. Importantly, the distribution of alleles from two homologous QTLs in the RIL population and diverse germplasm accessions consistently demonstrated that only the combination of elite allelic genotypes from both QTLs/genes resulted in a significantly dominant phenotype, accompanied by a substantial increase in sucrose content. The newly developed diagnostic markers for these QTLs were confirmed to be reliable and could facilitate future breeding efforts to enhance sucrose content using marker-assisted selection techniques. Overall, this study highlights the co-regulation of sucrose content by two major homologous QTLs/genes and provides valuable insights into the genetic basis of sucrose in peanuts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw re-sequencing data of the RIL population have been submitted in the NCBI Sequence Read Archive (SRA) under BioProject accession number PRJNA987674.

References

  • Agarwal G, Clevenger J, Pandey MK, Wang H, Shasidhar Y, Chu Y et al (2018) High-density genetic map using whole-genome resequencing for fine map** and candidate gene discovery for diseaseresistance in peanut. Plant Biotechnol J 16:1954–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal G, Clevenger J, Kale SM, Wang H, Pandey MK, Choudhary D et al (2019) A recombination bin-map identified a major QTL for resistance to Tomato spotted wilt virus in peanut (Arachis hypogaea). Sci Rep 9:18246

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre M, Kiegle E, Leo G, Ezquer I (2018) Carbohydrate reserves and seed development: an overview. Plant Reprod 31:263–290

    Article  CAS  PubMed  Google Scholar 

  • Alasalvar C, Bolling BW (2015) Review of nut phytochemicals, fat-soluble bioactives, antioxidantcomponents and health effects. Brit J Nutr 113(Suppl 2):S68-78

    Article  CAS  PubMed  Google Scholar 

  • Argyris JM, Diaz A, Ruggieri V, Fernandez M, Jahrmann T, Gibon Y et al (2017) QTL Analyses in multiple populations employed for the fine map** and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.). FrontPlant Sci 8:1679

    Google Scholar 

  • Arya SS, Salve AR, Chauhan S (2016) Peanuts as functional food: a review. J Food Sci Tech 53:31–41

    Article  CAS  Google Scholar 

  • Barkley NA, Isleib TG, Wang ML, Pittman RN (2013) Genotypic effect of AhFAD2 on fatty acid profifiles in six segregating peanut (Arachis hypogaea L.) populations. BMC Genet 14:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bera SK, Kamdar JH, Kasundra SV et al (2018) Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.). Euphytica 214:162

    Article  Google Scholar 

  • Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G et al (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genet 51:877–884

    Article  CAS  PubMed  Google Scholar 

  • Bishi SK, Kumar L, Dagla MC, Mahatma MK, Rathnakumar AL (2013) Lalwani HB (2013) Characterization of Spanish peanut germplasm (Arachis hypogaea L.) for sugar profiling and oil quality. Ind Crops Prod 51:46–50

    Article  CAS  Google Scholar 

  • Bishi SK, Lokesh K, Mahatma MK, Khatediya N, Chauhan SM, Misra JB (2015) Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Chem 67:107–114

    Google Scholar 

  • Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V et al (2016) Draft genome of the peanut a-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Nati Acad Sci USA 113:6785–6790

    Article  ADS  CAS  Google Scholar 

  • Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins P (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117

    Article  CAS  Google Scholar 

  • Coleman WM, White JL, Perfetti TA (1994) Characteristics of heat-treated aqueous extracts of peanuts and cashews. J Agric Food Chem 42:190–194

    Article  CAS  Google Scholar 

  • Costa F, Alba R, Schouten H et al (2010) Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening. BMC Plant Biol 10:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Desnoues E, Baldazzi V, Genard M, Mauroux JB, Lambert P, Confolent C, Quilot-Turion B (2016) Dynamic QTLs for sugars and enzyme activities provide an overview of genetic control of sugar metabolism during peach fruit development. J Exp Bot 67:3419–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  CAS  PubMed  Google Scholar 

  • Fan P, Song W, Kang Y, Wan L, Lei Y, Huai D, Chen Y, Wang X, Jiang H, Yan L, Liao B (2020) Phenotypic identification of peanut germplasm for resistance to southern stem rot. Oil Crop Sci 5:174–179

    Article  Google Scholar 

  • Gallardo K, Thompson R, Burstin J (2008) Reserve accumulation in legume seeds. Cr Biol 331:755–762

    Article  CAS  Google Scholar 

  • Guo J, Qi F, Qin L, Zhang M, Sun Z, Li H, Cui M, Zhang M, Li C, Li X, Zhao Q, Luo D, Tian M, Liu H, Xu J, Miao L, Huang B, Dong W, Han S, Zhang X (2023) Map** of a QTL associated with sucrose content in peanut kernels using BSA-seq. Front Genet 13:1089389

    Article  PubMed  PubMed Central  Google Scholar 

  • Han S, Yuan M, Clevenger JP, Li C, Hagan A, Zhang X, Chen C, He G (2018) A SNP-based linkage map revealed QTLs for resistance to early and late leaf spot diseases in peanut (Arachis hypogaea L.). Front Plant Sci 9:1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu XH, Zhang SZ, Miao HR, Cui FG, Shen Y, Yang WQ, Xu TT, Chen N, Chi XY, Zhang ZM, Chen J (2018) High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Sci Rep 8:5479

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genoty** by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Wu B, Zhao J, Li H, Chen W, Zheng Y, Ren X, Chen Y, Zhou X, Lei Y, Liao B, Jiang H (2016) Characterization and transferable utility of microsatellite markers in the wild and cultivated Arachis species. PLoS ONE 11:e0156633

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishimaru K, Hirotsu N, Madoka Y, Kashiwagi T (2007) Quantitative trait loci for sucrose, starch, and hexose accumulation before heading in rice. Plant Physiol Bioch 45:799–804

    Article  CAS  Google Scholar 

  • Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M, Khera P et al (2016) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213

    Article  CAS  PubMed  Google Scholar 

  • Jiang HF, Ren XP, Zhang XJ, Huang JQ, Lei Y, Yan LY, Liao BS, Upadhyaya HD (2010) Comparison of genetic diversity between peanut mini core collections from China and ICRISAT by SSR markers. Acta Agron Sin 36:1084–1091

    CAS  Google Scholar 

  • Jiang Y, Luo H, Yu B, Ding Y, Kang Y, Huang L, Zhou X, Liu N, Chen W, Guo J, Huai D, Lei Y, Jiang H, Yan L, Liao B (2021) High-density genetic linkage map construction using whole-genome resequencing for map** QTLs of resistance to Aspergillus flavus infection in Peanut. Front Plant Sci 12:745408

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A (2000) The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Genet Genom 263:796–805

    Article  CAS  Google Scholar 

  • Khan SA, Chen H, Deng Y, Chen Y, Zhang C, Cai T, Ali N, Mamadou G, ** of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea). Theor Appl Genet 133:2239–2257

    Article  CAS  PubMed  Google Scholar 

  • Kris-Etherton PM, Hu FB, Ros E, Sabate J (2008) The role of tree nuts and peanuts in the prevention of coronary heart disease: multiple potential mechanisms. J Nutr 138:1746S-1751S

    Article  CAS  PubMed  Google Scholar 

  • Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kim H, Nishitani C, Terakami S, Yamamoto T (2014) Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breeding Sci 64:240–251

    Article  CAS  Google Scholar 

  • Lecomte L, Duffe P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Yang X, Cui S, Meng X, Mu G, Hou M, He M, Zhang H, Liu L, Chen CY (2019) Construction of high-density genetic map and map** quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Front Plant Sci 10:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Huang L, Liu N, Pandey MK, Chen Y, Cheng L et al (2021a) Key regulators of sucrose metabolism identified through comprehensive comparative transcriptome analysis in peanuts. Int J Mol Sci 22:7266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Huang L, Liu N, Pandey MK, Chen Y, Cheng L, Guo J, Yu B, Luo H, Zhou X, Huai D, Chen W, Yan L, Wang X, Lei Y, Varshney RK, Liao B, Jiang H (2021b) Key regulators of sucrose metabolism identified through comprehensive comparative transcriptome analysis in peanuts. Int J Mol Sci 22:7266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Sun Z, Zhang X, Qin L, Qi F, Wang Z, Du P, Xu J, Zhang Z, Han S, Li S, Gao M, Zhang L, Cheng Y, Zheng Z, Huang B, Dong W (2020) QTL map** of web blotch resistance in peanut by high-throughput genome-wide sequencing. BMC Plant Biol 20:249

    Article  PubMed  PubMed Central  Google Scholar 

  • López Y, Nadaf HL, Smith OD, Connell JP, Reddy AS et al (2000) Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet 101:1131–1138

    Article  Google Scholar 

  • Lu Q, Li H, Hong Y, Zhang G, Wen S, Li X, Zhou G, Li S, Liu H, Liu H, Liu Z, Varshney RK, Chen X, Liang X (2018) Genome sequencing and analysis of the peanut B-Genome progenitor (Arachis ipaensis). Front Plant Sci 9:604

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Guo J, Yu B, Chen W, Zhang H, Zhou X, Chen Y, Huang L, Liu N, Ren X, Yan L, Huai D, Lei Y, Liao B, Jiang H (2021) Construction of ddRADseq-based high-density genetic map and identification of quantitative trait loci for trans-resveratrol content in peanut seeds. Front Plant Sci 12:644402

    Article  PubMed  PubMed Central  Google Scholar 

  • McDaniel KA, White BL, Dean LL, Sanders TH, Davis JP (2012) Compositional and mechanical properties of peanuts roasted to equivalent colors using different time/temperature combinations. J Food Sci 77:C1293–C1299

    Article  PubMed  Google Scholar 

  • Mukri G, Nadaf HL, Bhat RS, Gowda MVC, Upadhyaya HD, Sujay V (2014) Phenotypic and molecular dissection of ICRISAT mini core collection of peanut. Plant Breeding 131:418–422

    Article  Google Scholar 

  • Nawade B, Bosamia TC, Thankappan R, Rathnakumar AL, Kumar A, Dobaria JR (2016) Insights into the Indian peanut genotypes for AhFAD2 gene polymorphism regulating its oleic and linoleic acid flfluxes. Front Plant Sci 7:1271

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimaraes P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651

    Article  CAS  PubMed  Google Scholar 

  • Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P, Guo B, Varshney RK (2017) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil G, Vuong TD, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Lu F, Kumpatla S, Shannon JG, Varshney RK, Nguyen HT (2018) Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific map** population of soybean using high-density linkage map**. Plant Biotechnol J 16:1939–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattee HE, Giesbrecht FG (1990) Roasted peanut flavor variation across germplasm sources. Peanut Sci 17:109–112

    Article  Google Scholar 

  • Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664

    Article  PubMed  Google Scholar 

  • Quilot B, Genard M, Kervella J, Lescourret F (2004) Analysis of genotypic variation in fruit flesh total sugar content via an ecophysiological model applied to peach. Theor Appl Genet 109:440–449

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67

    Article  CAS  PubMed  Google Scholar 

  • Rusu ME, Mocan A, Ferreira I, Popa DS (2019) Health benefits of nut consumption in middle-aged and elderly population. Antioxidants 8:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samoluk SS, Robledo G, Podio M, Chalup L, Ortiz JP, Pessino SC, Seijo JG (2015) First insight into divergence, representation and chromosome distribution of reverse transcriptase fragments from L1 retrotransposons in peanut and wild relative species. Genetica 143:113–125

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SC, Thudi M, Pandey MK, Rami JF, Fonceka D, Gowda MV, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20:173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Z, Hao C, Wang L et al (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, Gowda MV, Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    Article  CAS  PubMed  Google Scholar 

  • Wang CT, Tang YY, Wang XZ, Chen DX, Gui FG, Chi YC, Zhang JC, Yu SL (2011a) Evaluation of groundnut genotypes from China for quality traits. J SAT Agric Res 9:1–5

    Google Scholar 

  • Wang ML, Sukumaran S, Barkley NA, Chen Z, Chen CY, Guo B, Pittman RN, Stalker HT, Holbrook CC, Pederson GA, Yu J (2011b) Population structure and marker-trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet 123:1307–1317

    Article  PubMed  Google Scholar 

  • Wang Z, Huai D, Zhang Z, Cheng K, Kang Y, Wan L, Yan L, Jiang H, Lei Y, Liao B (2018) Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci 9:827

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Sun J, Miao J et al (2020) An overlooked pale-green embryo mutant provides key insights into maize plastid development. J Integr Plant Biol 62:480–496

    Google Scholar 

  • Whiting RM, Torabi S, Lukens L, Eskandari M (2020) Genomic regions associated with important seedquality traits in food-grade soybeans. BMC Plant Biol 20:485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Wang B, Chen X, Wu J, King GJ, **ao Y et al (2016) Evaluation of linkage disequilibrium pattern and association study on seed oil content in Brassica napus using ddRAD sequencing. PLoS ONE 11:e0146383

    Article  PubMed  PubMed Central  Google Scholar 

  • ** for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA 107:10578–10583

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Pan L, Yang Q, Min P, Ren Z, Zhang H (2008) Comparison of the Delta(12) fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. J Genet Genom 35:679–685

    Article  CAS  Google Scholar 

  • Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L, Zhang J, Chen J (2019) QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol 19:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Dean L, Wang ML, Dang P, Lamb M, Chen C (2023) GWAS with principal component analysis identify QTLs associated with main peanut flavor-related traits. Front Plant Sci 14:1204415

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, **a Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics 15:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuang W, Chen H, Yang M, Wang J, Pandey MK, Zhang C et al (2019) The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genet 51:865–876

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 32201770), the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Science (CAAS-ASTIP-2021-OCRI), and Natural Science Foundation of Hubei Province (2022CFB332).

Funding

This work was supported by the National Natural Science Foundation of China (No. 32201770), the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Science (CAAS-ASTIP-2021-OCRI), and Natural Science Foundation of Hubei Province (2022CFB332).

Author information

Authors and Affiliations

Authors

Contributions

ZW, KL, YL, and BL designed the experiments. ZW analyzed the data and performed the bioinformatics analysis. ZW, YZ, YL, and BL wrote the manuscript. ZW, DH, YC, XW, YK, LY, and HJ performed the experiments. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Kede Liu, Yong Lei or Boshou Liao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

The authors state that all experiments in the study comply with the ethical standards.

Additional information

Communicated by Janila Pasupuleti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, Y., Huai, D. et al. Detection of two homologous major QTLs and development of diagnostic molecular markers for sucrose content in peanut. Theor Appl Genet 137, 61 (2024). https://doi.org/10.1007/s00122-024-04549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-024-04549-5

Navigation