Log in

Anchoring alien chromosome segment substitutions bearing gene(s) for resistance to mustard aphid in Brassica juncea-B. fruticulosa introgression lines and their possible disruption through gamma irradiation

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Heavy doses of gamma irradiation can reduce linkage drag by disrupting large sized alien translocations and promoting exchanges between crop and wild genomes.

Abstract

Resistance to mustard aphid (Lipaphis erysimi) infestation was significantly improved in Brassica juncea through B. juncea-B. fruticulosa introgression. However, linkage drag caused by introgressed chromatin fragments has so far prevented the deployment of this resistance source in commercial cultivars. We investigated the patterns of donor chromatin segment substitutions in the introgression lines (ILs) through genomic in situ hybridization (GISH) coupled with B. juncea chromosome-specific oligonucleotide probes. These allowed identification of large chromosome translocations from B. fruticulosa in the terminal regions of chromosomes A05, B02, B03 and B04 in three founder ILs (AD-64, 101 and 104). Only AD-101 carried an additional translocation at the sub-terminal to intercalary position in both homologues of chromosome A01. We validated these translocations with a reciprocal blast hit analysis using shotgun sequencing of three ILs and species-specific contigs/scaffolds (kb sized) from a de novo assembly of B. fruticulosa. Alien segment substitution on chromosome A05 could not be validated. Current studies also endeavoured to break linkage drag by exposing seeds to a heavy dose (200kR) of gamma radiation. Reduction in the size of introgressed chromatin fragments was observed in many M3 plants. There was a complete loss of the alien chromosome fragment in one instance. A few M3 plants with novel patterns of chromosome segment substitutions displayed improved agronomic performance coupled with resistance to mustard aphid. SNPs in such genomic spaces should aid the development of markers to track introgressed DNA and allow application in plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Raw reads from sequencing data of the founder ILs are available at National Centre for Biotechnology Information as Bio-Project PRJNA662836 with bio sample IDs as SAMN18236321-23. Supply of plant materials will require prior approval from Biodiversity Authority of India.

References

  • Agrawal N, Gupta M, Banga S, Heslop-Harrison JS (2020) Identification of chromosomes and chromosome rearrangements in crop brassicas and Raphanus sativus: a cytogenetic toolkit using synthesized massive oligonucleotide libraries. Front Plant Sci 11:2085

    Article  Google Scholar 

  • Ahuja I, Rohloff J, Bones AM (2010) Defense mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management: a review. Agron Sustain Dev 30:311–348

    Article  Google Scholar 

  • Arnold BJ, Lahner B, DaCosta JM, Weisman CM, Hollister JD, Salt DE, Bomblies K, Yant L (2016) Borrowed alleles and convergence in serpentine adaptation. Proc Natl Acad Sci 113:8320–8325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atri C, Kumar B, Kumar H, Kumar S, Sharma S, Banga SS (2012) Development and characterization of Brassica juncea–fruticulosa introgression lines exhibiting resistance to mustard aphid (Lipaphis erysimi Kalt). BMC Genet 13:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atri C, Akhatar J, Gupta M, Gupta N, Goyal A, Rana K, Kaur R, Mittal M, Sharma A, Singh MP, Sandhu PS (2019) Molecular and genetic analysis of defensive responses of Brassica juncea–B. fruticulosa introgression lines to Sclerotinia infection. Sci Rep 19:1–2

    Google Scholar 

  • Axelsson T, Bowman CM, Sharpe AG, Lydiate DJ, Lagercrantz U (2000) Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome 43:679–688

    Article  CAS  PubMed  Google Scholar 

  • Bakhetia DRC, Bindra OS (1977) Screening technique for aphid resistance in Brassica crop. J Sabrao 9:91–107

    Google Scholar 

  • Bakhetia DRC, Sandhu RS (1973) Differential response of Brassica species/varieties to the aphid (Lipaphis erysimi Kalt.) infestation. J Res PAU 10:272–279

    Google Scholar 

  • Banga SS, Banga S (2016) Genetic Diversity and Germplasm Patterns in Brassica juncea. In Gene Pool Diversity and Crop Improvement (Rajpal, V.R, Rao, S.R. and Raina, S.N, eds). Cham: Springer, pp 163–186

  • Banga SK, Kumar P, Bhajan R, Singh D, Banga SS (2015) Genetics and breeding. In: KumarBanga ASS, Meena PD, Kumar PR (eds) Brassica Oilseeds: Breeding and Management. CABI, UK, pp 11–41

    Chapter  Google Scholar 

  • Banuelos GS, Dhillon KS. Banga SS (2013) Oilseed Brassicas. In Biofuel crops: production, physiology and genetics(Singh, B.P, eds). UK: CABI, pp 339–368

  • Burgarella C, Barnaud A, Kane NA, Jankowski F, Scarcelli N, Billot C, Vigouroux Y, Berthouly-Salazar C (2019) Adaptive introgression: an untapped evolutionary mechanism for crop adaptation. Front Plant Sci 1:10

    Google Scholar 

  • Chandra A, Gupta ML, Banga S, Banga SS (2004) Production of an interspecific hybrid between Brassica fruticulosa and B. rapa. Plant Breed 123:497–498

    Article  Google Scholar 

  • Chen G, Zheng Q, Bao Y, Liu S, Wang H, Li X (2012) Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin. J Biosci 37:149–155

    Article  PubMed  Google Scholar 

  • Cheng H, Liu J, Wen J, Nie X, Xu L, Chen N, Li Z, Wang Q, Zheng Z, Li M, Cui L (2019) Frequent intra-and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol 136. https://doi.org/10.1186/s13059-019-1744-x

    Article  Google Scholar 

  • Civáň P, Brown TA (2018) Role of genetic introgression during the evolution of cultivated rice (Oryza sativa L.). BMC evol biol 18,57. https://doi.org/10.1186/s12862-018-1180-7

  • Cole RA (1994a) Isolation of a chitin binding lectin, with insecticidal activity in chemically defined synthetic diets, from two wild Brassica species with resistance to cabbage aphid, Brevicoryne Brassicae. Entomol Exp Appl 72:181–187

    Article  CAS  Google Scholar 

  • Cole RA (1994b) Locating a resistance mechanism to the cabbage aphid in two wild Brassicas. Entomol Exp Appl 71:23–31

    Article  Google Scholar 

  • Dong F, Song J, Naess S, Helgeson J, Gebhardt C, Jiang J (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007

    Article  CAS  Google Scholar 

  • Ellis PR, Farrell JA (1995) Resistance to cabbage aphid (Brevicoryne Brassicae) in six Brassica accessions in New Zealand. New Zeal J Crop Hort Sci 23:25–29

    Article  Google Scholar 

  • Ellis PR, Kiff NB, Pink DAC, Jukes PL, Lynn J, Tatchell GM (2000) Variation in resistance to the cabbage aphid (Brevicoryne Brassicae) between and within wild and cultivated Brassica species. Genet Resour Crop Evol 47:395–401

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Gill BS, Friebe BR, White FF (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Natl Acad Sci 108:7657–7658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbunova V, Levy AA (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci 4:263–269

    Article  CAS  PubMed  Google Scholar 

  • Gudi S, Atri C, Goyal A, Kaur N, Akhtar J, Mittal M, Kaur K, Banga KG, SS, (2020) Physical map** of introgressed chromosome fragment carrying the fertility restoring (Rfo) gene for Ogura CMS in Brassica juncea L. Czern & Coss Theor Appl Genet 133:2949–2959

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Banga SS (2020) Exploiting alien genetic variation for germplasm enhancement in Brassica oilseeds. In Quantitative Genetics, Genomics and Plant Breeding (Singh, M.S, ed.). USA: CABI, pp 338–384

  • Hao M, Zhang L, Ning S, Huang L, Yuan Z, Wu B, Yan Z, Dai S, Jiang B, Zheng Y, Liu D (2020) The resurgence of introgression breeding, as exemplified in wheat improvement. Front Plant Sci 6:252

    Article  Google Scholar 

  • Hase Y, Satoh K, Kitamu S, Oono Y (2018) Physiological status of plant tissue affects the frequency and types of mutations induced by carbon-ion irradiation in Arabidopsis. Sci Rep 8:1394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrera JC, D’Hont A, Lashermes P (2007) Use of fluorescence in situ hybridization as a tool for introgression analysis and chromosome identification in coffee (Coffea arabica L.). Genome 50:619–626

    Article  PubMed  Google Scholar 

  • Hosseinimehr SJ (2010) Flavonoids and genomic instability induced by ionizing radiation. Drug Discov Today 15:907–918

    Article  CAS  PubMed  Google Scholar 

  • Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9:e1003477

  • Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73

    Article  CAS  PubMed  Google Scholar 

  • Jang TS, Weiss-Schneeweiss H (2015) Formamide-free genomic in situ hybridization allows unambiguous discrimination of highly similar parental genomes in diploid hybrids and allopolyploids. Cytogenet Genome Res 146:325–331

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Namai H, Matsuzawa Y, Sarashima M (1992) Induction of translocation in radish [Raphanussativus] by gamma-ray irradiation of seeds in the chromosome addition lines of radish with a single kale chromosome. Jap J Breed 42:383–396

    Article  CAS  Google Scholar 

  • Katche E, Quezada-Martinez D, Katche EI, Vasquez-Teuber P, Mason AS (2019) Interspecific hybridization for Brassica crop improvement. CBGG 22:1

    Google Scholar 

  • Kaur P, Banga S, Kumar N, Gupta S, Akhatar J, Banga SS (2014) Polyphyletic origin of Brassica juncea with B. rapa and B. nigra (Brassicaceae) participating as cytoplasm donor parents in independent hybridization events. Am J Bot 101:1157–1166

    Article  PubMed  Google Scholar 

  • Kazama Y, Ishii K, Hirano T, Wakana T, Yamada M, Ohbu S et al (2017) Different mutational function of low- and high-linear energy transfer heavy-ion irradiation demonstrated by whole-genome resequencing of Arabidopsis mutants. Plant J 92:1020–1030

    Article  CAS  PubMed  Google Scholar 

  • Khrustaleva LI, De Melo PE, Van Heusden AW, Kik C (2005) The integration of recombination and physical maps in a large-genome monocot using haploid genome analysis in a trihybrid Allium population. Genetics 169:1673–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King J, Grewal S, Yang CY, Hubbart Edwards S, Scholefield D, Ashling S, Harper JA, Allen AM, Edwards KJ, Burridge AJ, King IP (2018) Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Ann Bot 23:229–240

    Article  CAS  Google Scholar 

  • Kliebenstein D, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Banga SS (2017) Breeding for aphid resistance in rapeseed-mustard. In Breeding Insect Resistant Crops for Sustainable Agriculture (Arora, R. and Sandhu, S, eds). Singapore: Springer, pp 171–199

  • Kumar S, Atri C, Sangha MK, Banga SS (2011) Screening of wild crucifers for resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) and attempt at introgression of resistance gene (s) from Brassica fruticulosa to Brassica juncea. Euphytica 179:461–470

    Article  Google Scholar 

  • Landry C, Hart ID, Ranz J (2007) Genome clashes in hybrids: insights from gene expression. Heredity 99:483–493

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larik AS, Memon S, Soomro ZA (2009) Radiation induced polygenic mutations in Sorghum bicolor L. J Agric Res 47:11–19

    Google Scholar 

  • Lim KB, De Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, ** M, ** YM, Kim SH (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cells 1:19–25

    Google Scholar 

  • Liu Z, Wang Y, Shen GYW, Hao S, Liu B (2004) Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia. Plant Mol Biol 54:571–582

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewski AJ (1995) Physical distribution of translocation breakpoints in homeologous recombinants induced by the absence of Ph1 gene in wheat and triticale. Theor Appl Genet 90:714–719

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 4:516–525

    Article  CAS  Google Scholar 

  • Malek MA, Begum HA, Begum M, Sattar MA, Ismail MR, Rafii MY (2012) Development of two high yielding mutant varieties of mustard ['Brassica juncea' (L.) Czern.] through gamma rays irradiation. Aust J Crop Sci 6:922-927

  • Malik RS, Anand IJ (1984) Effect of aphid infestation on the oil yielding attributes in Brassica. J Oilseeds Res 1:147–155

    Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17:10–12

    Article  Google Scholar 

  • Nachman MW, Payseur BA (2012) Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Philos Trans R Soc Lond B Biol Sci 367:409–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolas SD, Leflon M, Liu Z, Eber F, Chelysheva L, Coriton O, Chèvre AM, Jenczewski E (2008) Chromosome “speed dating” during meiosis of polyploid Brassica hybrids and haploids. Cytogenet Genome Res 120:331–338

    Article  CAS  PubMed  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Equip 30:1–6

    Article  CAS  Google Scholar 

  • Olsson G (1960) Species crosses within the genus Brassica. I Artificial Brassica Juncea Coss Hereditas 46:171–223

    Google Scholar 

  • Prakash S, Bhat SR, Quiros CF, Kirti PB, Chopra VL (2009) Brassica and Its Close Allies: Cytogenetics and Evolution. Plant Breed Rev 31:21–187

    CAS  Google Scholar 

  • Preuss D, Copenhaver GP (2000) Chemical and physical treatment that stimulate recombination. International Application WO/2000/054574,

  • Primard-Brisset C, Poupard JP, Horvais R, Eber F, Pelletier G, Renard M, Delourme R (2005) A new recombined double low restorer line for the Ogu-INRA cms in rapeseed (Brassica napus L.). Theor Appl Genet 111:736–746

    Article  CAS  PubMed  Google Scholar 

  • Ramzan F, Younis A, Lim KB (2017) Application of genomic in situ hybridization in horticultural science. Int J Genom 18:44–56

    Google Scholar 

  • Rana K, Atri C, Gupta M, Akhatar J, Sandhu PS, Kumar N, Jaswal R, Barbetti MJ, Banga SS (2017) Map** resistance responses to Sclerotinia infestation in introgression lines of Brassica juncea carrying genomic segments from wild Brassicaceae B. fruticulosa. Sci Rep 7:5904. https://doi.org/10.1038/s41598-017-05992-9

  • Rana K, Atri C, Akhatar J, Kaur R, Goyal A, Singh MP, Kumar N, Sharma A, Sandhu PS, Kaur G, Barbetti MJ, Banga SS (2019) Detection of first marker trait associations for resistance against sclerotinia sclerotiorum in Brassica juncea–Erucastrum cardaminoides introgression lines. Front Plant Sci 10:1015. https://doi.org/10.3389/fpls.2019.01015

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritter S, Durante M (2010) Heavy-ion induced chromosomal aberrations: a review. Mutat Res-Gen Tox En 701:38–46

    Article  CAS  Google Scholar 

  • Rohilla HR, Singh H, Kalra VK, Kharub SS (1987) Losses caused by mustard aphid Lipaphis erysimi (Kalt.) in different Brassica genotypes. Proc Int Rapeseed Congr 7:077–1084

    Google Scholar 

  • Sachdeva H, Barton NH (2018) Introgression of a Block of Genome Under Infinitesimal Selection. Genetics 209:1279–1303

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos JD, Chebotarov D, McNally KL, Bartholomé J, Droc G, Billot C, Glaszmann JC (2019) Fine scale genomic signals of admixture and alien introgression among Asian rice landraces. Genome Biol Evol 11:1358–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarmashghi S, Bohmann K, Gilbert MTP, Bafna V, Mirarab S (2019) Skmer: assembly-free and alignment-free sample identification using genome skims. Genome Biol 20:34–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmickl R, Marburger S, Bray S, Yant L (2017) Hybrids and horizontal transfer: introgression allows adaptive allele discovery. J Exp Bot 68:5453–5470

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher T (2003) DNA, chromosomes, and in situ hybridization. Genome 46:953–962

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. BIOS Sci Pub Ltd 34:34–68

    Google Scholar 

  • Shirley BW, Hanley S, Goodman HM (1992) Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4:333–347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spect CE, Diederichsen A (2001) Brassica. In: Hanelt P (ed) Mansfeld’s encyclopedia of agricultural and horticultural crops. Springer-Verlag, Berlin, pp 1453–1456

    Google Scholar 

  • Szakács É, Kruppa K, Molnár I, Molnár-Láng M (2010) Induction of wheat/barley translocations by irradiation and their detection using fluorescence in situ hybridization. Acta Agron Hung 58:203–209

    Article  Google Scholar 

  • Taagen E, Bogdanove AJ, Sorrells ME (2020) Counting on Crossovers: Controlled recombination for plant breeding. Trends Plant Sci 25:455–465

    Article  CAS  PubMed  Google Scholar 

  • Vaughan JG, Hemingway JS, Schofield HJ (1963) Contributions to a study of variation in Brassica juncea Coss & Czern. Bot J Linn Soc 58:435–447

    Article  Google Scholar 

  • Vavilov NI (1949) The origin, variation, immunity, breeding of cultivated plants. Chron Bot 13:1–364

    Google Scholar 

  • Wang Y, Feng S, Li S, Tang D, Chen Y, Zhou B (2018) Inducement and identification of chromosome introgression and translocation of Gossypium australe on Gossypium hirsutum. BMC Genom 19:15

    Article  CAS  Google Scholar 

  • Wang X, Chen L, Ma J (2019a) Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication. Genome Biol 20:22. https://doi.org/10.1186/s13059-019-1631-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Yu Z, Li G, Yang Z (2019b) Diversified chromosome rearrangements detected in a Wheat-Dasypyrum breviaristatum substitution line induced by Gamma-Ray Irradiation. Plants 8:175

    Article  PubMed Central  CAS  Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicae) – chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    Article  CAS  PubMed  Google Scholar 

  • Wei WH, Zhao WP, Song YC, Liu LH, Guo LQ, Gu MG (2003) Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays× Zea diploperennis. Hereditas 138:21–26

    Article  PubMed  Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580

    Article  Google Scholar 

  • Whitney KD, Broman K, Kane NC, Hovick SM, Randell RA, Rieseberg LH (2015) Quantitative trait locus map** identifies candidate alleles involved in adaptive introgression and range expansion in a wild sunflower. Mol Eco 24:2194–2211

    Article  Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Yao P (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeologue gene expression influencing selection. Nat Genet 48:1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Zhou A, **a G (2005) Introgression of the Haynaldia villosa genome into γ-ray-induced asymmetric somatic hybrids of wheat. Plant Cell Rep 24:289–296

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was carried with financial assistance from four different projects. Development of basic germplasm and sequencing of introgression lines were carried out with financial support from the ICAR National Professor Chair Project “Broadening the genetic base of Indian mustard (Brassica juncea) through alien introgressions and germplasm enhancement” funded by Indian Council of Agricultural Research (ICAR). Molecular cytogenetic experiments were conducted with financial assistance from Department of Biotechnology, Government of India, in the form of Centre of Excellence and Innovation in Biotechnology “Germplasm enhancement for crop architecture and defensive traits in Brassica”. Whole genome sequencing of Brassica fruticulosa was carried out with financial assistance from National Agricultural Science Fund aided project “Creating a fully characterized genetic resource pipeline for mustard improvement programme in India”. Part of the work was supported under the Newton-Bhabha Fund UK-India Pulses and Oilseeds Research Initiative, with funding from UK's Official Development Assistance Newton Fund awarded by UK Biotechnology and Biological Sciences Research Council (BB/R019819/1). Neha Agrawal acknowledges financial support from Jawaharlal Nehru Memorial Fund for the award of JNMF fellowship during one year of the studies.

Author information

Authors and Affiliations

Authors

Contributions

S.S.B., N.A. and P.H.H. designed the research. S.S.B. and C.A. developed and maintained the introgression lines. N.A. and M.G. conducted cytogenetic studies. J.A. and N.A. carried out bioinformatics analysis. N.A and M.G interpreted the data and wrote the paper. S.S.B. and P.H.H. edited the manuscript and supervised the studies. All authors have read and approved this version of manuscript.

Corresponding author

Correspondence to Surinder S. Banga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Isobel A.P. Parkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

122_2021_3886_MOESM2_ESM.jpg

Multicolour in situ hybridization on mitotic chromosome spreads of (a-c) AD-101 and (d-f) AD-64/AD-104 using (a, d) B. fruticulosa genomic DNA (green) and Cent Br2 (Red), (b, e) B. nigra genomic DNA and (c, f) three oligo libraries.

Supplementary file2 (JPG 1971 kb)

122_2021_3886_MOESM3_ESM.jpg

Multicolour in situ hybridization on mitotic chromosome spreads of control non-introgressed euploid B. juncea B. juncea using (a) B. nigra genomic DNA (green) (b) B. fruticulosa genomic DNA (green) and Cent Br2 (Red) showing no hybridization signals from B. fruticulosa.)

Supplementary file3 (JPG 1232 kb)

122_2021_3886_MOESM4_ESM.tif

SNP density at the predicted sites introgressed fragments on chromosomes A01, B02, B03 and B04 of identified introgression lines compared to B. juncea recipient parent. SNP density (within 1 Mb window) was estimated and plotted by r-package “CMplot” (https://github.com/YinLiLin/CMplot).Chromosome cartoons reflecting SNP density were drawn manually.(TIFF 8507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, N., Gupta, M., Atri, C. et al. Anchoring alien chromosome segment substitutions bearing gene(s) for resistance to mustard aphid in Brassica juncea-B. fruticulosa introgression lines and their possible disruption through gamma irradiation. Theor Appl Genet 134, 3209–3224 (2021). https://doi.org/10.1007/s00122-021-03886-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03886-z

Navigation