Log in

A large-scale introgression of genomic components of Brassica rapa into B. napus by the bridge of hexaploid derived from hybridization between B. napus and B. oleracea

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Brassica rapa (AA) has been used to widen the genetic basis of B. napus (AACC), which is a new but important oilseed crop worldwide. In the present study, we have proposed a strategy to develop new type B. napus carrying genomic components of B. rapa by crossing B. rapa with hexaploid (AACCCC) derived from B. napus and B. oleracea (CC). The hexaploid exhibited large flowers and high frequency of normal chromosome segregation, resulting in good seed set (average of 4.48 and 12.53 seeds per pod by self and open pollination, respectively) and high pollen fertility (average of 87.05 %). It was easy to develop new type B. napus by crossing the hexaploid with 142 lines of B. rapa from three ecotype groups, with the average crossability of 9.24 seeds per pod. The genetic variation of new type B. napus was diverse from that of current B. napus, especially in the A subgenome, revealed by genome-specific simple sequence repeat markers. Our data suggest that the strategy proposed here is a large-scale and highly efficient method to introgress genomic components of B. rapa into B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allender C, King G (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54

    Article  PubMed  Google Scholar 

  • Becker H, Engqvist G, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91:62–67

    Article  CAS  Google Scholar 

  • Bus A, Körber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123:1413–1423

    Article  PubMed  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    Article  CAS  PubMed  Google Scholar 

  • Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes M, Eber F, Lucas MO, Lode M, Chèvre AM, Jenczewski E (2010) Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Plant Cell 22:2265–2276

    Article  CAS  PubMed  Google Scholar 

  • Diers BW, Osborn TC (1994) Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polymorphisms. Theor Appl Genet 88:662–668

    Article  Google Scholar 

  • Federico I, Maria F (2011) The genetics of Brassica napus L. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, New York Dordrecht Heidelberg London, pp 261–291

    Google Scholar 

  • Fujii K, Ohmido N (2011) Stable progeny production of the amphidiploid resynthesized Brassica napus cv. Hanakkori, a newly bred vegetable. Theor Appl Genet 123:1433–1443

    Article  CAS  PubMed  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  CAS  PubMed  Google Scholar 

  • Gaeta RT, Yoo SY, Pires JC, Doerge RW, Chen ZJ, Osborn TC (2009) Analysis of gene expression in resynthesized Brassica napus allopolyploids using Arabidopsis 70mer oligo microarrays. PLoS ONE 4(3):e4760

    Article  PubMed  Google Scholar 

  • Girke A, Schierholt A, Becker HC (2012) Extending the rapeseed gene-pool with resynthesized Brassica napus L. I: genetic diversity. Genet Resour Crop Evol 59:1441–1447

    Article  CAS  Google Scholar 

  • Gómez-Campo C (1999) Biology of Brassica coenospecies. Elsevier, Amsterdam Lausanne New York Oxford Shannon Singapore Tokyo

    Google Scholar 

  • Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53:793–802

    Article  CAS  Google Scholar 

  • Howell EC, Barker GC, Jones GH, Kearsey MJ, King GJ, Kop EP, Ryder CD, Teakle GR, Vicente JG, Armstrong SJ (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161:1225–1234

    CAS  PubMed  Google Scholar 

  • Huettel B, Kreil DP, Matzke M, Matzke AJM (2008) Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana. PLoS Genet 4(10):e1000226

    Article  PubMed  Google Scholar 

  • Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chèvre AM (2003) PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653

    CAS  PubMed  Google Scholar 

  • Leitch IJ, Heslop-Harrison JSP (1994) Detection of digoxigenin-labeled DNA probes hybridized to plant chromosomes in situ. Methods Mol Biol 28:177–185

    CAS  PubMed  Google Scholar 

  • Liu HL (2000) Genetics and breeding in rapeseed. Chinese Agricultural Universitatis Press, Bei**g

    Google Scholar 

  • Liu Z, Adamczyk K, Manzanares-Dauleux M, Eber F, Lucas MO, Delourme R, Chèvre AM, Jenczewski E (2006) Map** PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics 174:1583–1596

    Article  CAS  PubMed  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    Article  CAS  PubMed  Google Scholar 

  • Malek MA, Ismail MR, Rafii MY, Rahman M (2012) Synthetic Brassica napus L.: development and studies on morphological characters, yield attributes, and yield. Sci World J 2012:416901

    Article  CAS  Google Scholar 

  • Mei J, Li Q, Qian L, Fu Y, Li J, Frauen M, Qian W (2011a) Genetic investigation of the origination of allopolyploid with virtually synthesized lines: application to the C subgenome of Brassica napus. Heredity 106:955–961

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Fu Y, Qian L, Xu X, Li J, Qian W (2011b) Effectively widening the gene pool of oilseed rape (Brassica napus L.) by using Chinese B. rapa in a ‘virtual allopolyploid’ approach. Plant Breed 130:333–337

    Article  Google Scholar 

  • Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi J, Li J, Liu L, Liu S, Mckay J, Qian W (2013) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Thero Appl Genet 126:549–556

    Article  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endouncleases. Proc Natl Acad Sci 76:5269–5273

    Article  CAS  PubMed  Google Scholar 

  • Nicolas SD, Leflon M, Monod H, Eber F, Coriton O, Huteau V, Chèvre AM, Jenczewski E (2009) Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. Plant Cell 21:373–385

    Article  CAS  PubMed  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Thero Appl Genet 111:1514–1523

    Article  CAS  Google Scholar 

  • Qian W, Liu R, Meng J (2003) Genetic effects on biomass in interspecific hybrids between Brassica napus and B. rapa. Euphytica 134:9–15

    Article  CAS  Google Scholar 

  • Qian W, Chen X, Fu D, Zou J, Meng J (2005) Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet 110:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C (2006) Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet 113:49–54

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (1997) NTSYS-pc 2.1. Numerical taxonomy and multivariate analysis system. Exeter Software. Setauket, NY

    Google Scholar 

  • Salmon A, Flagel L, Ying B, Udall JA, Wendel JF (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186:123–134

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Morán E, Benavente E, Orellana J (2001) Analysis of karyotypic stability of homoeologous-pairing (ph) mutants in allopolyploid wheats. Chromosoma 110:371–377

    Google Scholar 

  • Seyis F, Snowdon RJ, Luhs W, Friedt W (2003) Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breed 122:473–478

    Article  CAS  Google Scholar 

  • Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL (2009) Unraveling the complex trait of crop yield with quantitative trait loci map** in Brassica napus. Genetics 182(3):851–861

    Article  CAS  PubMed  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  CAS  PubMed  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lodé M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ, Chalhoub B, Jenczewski E, Chèvre AM (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    Article  CAS  PubMed  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lodé M, Coriton O, Jenczewski E, Chèvre AM (2011) Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassica napus. New Phytol 191:884–894

    Article  CAS  PubMed  Google Scholar 

  • Tian ET, Jiang YF, Chen LL, Zou J, Liu F, Meng JL (2010) Synthesis of a Brassica trigenomic allohexaploid (B. carinata × B. rapa) de novo and its stability in subsequent generations. Theor Appl Genet 121:1431–1440

    Article  CAS  PubMed  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Wen J, Tu JX, Li ZY, Fu TD, Ma CZ, Shen JX (2008) Improving ovary and embryo culture techniques for efficient resynthesis of Brassica napus from reciprocal crosses between yellow-seeded diploids B. rapa and B. oleracea. Euphytica 162:81–89

    Article  Google Scholar 

  • Wen J, Zeng X, Pu Y, Qi L, Li Z, Tu J, Ma C, Shen J, Fu T (2010) Meiotic nondisjunction in resynthesized Brassica napus and generation of aneuploids through microspore culture and their characterization. Euphytica 173:99–111

    Article  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    Article  CAS  PubMed  Google Scholar 

  • Wright KM, Pires JC, Madlung A (2009) Mitotic instability in resynthesized and natural polyploids of the genus Arabidopsis (Brassicaceae). Am J Bot 96:1656–1664

    Article  CAS  PubMed  Google Scholar 

  • **ong ZY, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA 108:7908–7913

    Article  CAS  PubMed  Google Scholar 

  • Xu YH, Xu H, Wu XM, Fang XP, Wang JB (2012) Genetic changes following hybridization and genome doubling in synthetic Brassica napus. Biochem Genet 50:616–624

    Article  CAS  PubMed  Google Scholar 

  • Yao JL, Yang PF, Hu CG, Zhang YD, Luo BS (2004) Embryological evidence of apomixis in Eulaliopsis binata. Acta Bot Sin 46:86–92

    Google Scholar 

  • Zhao JJ, Wang XW, Deng B, Lou P, Wu J, Sun RF, Xu ZY, Vromans J, Koornneef M, Bonnema G (2005) Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet 110:1301–1314

    Article  PubMed  Google Scholar 

  • Zou J, Zhu J, Huang S, Tian E, **ao Y, Fu D, Tu J, Fu T, Meng J (2010) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120:283–290

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Prof. **ling Meng for the kind suggestions and Dr. Jack Muller for critical reading of this paper. This study is partly supported by grants from NPZ Company, Key Projects in the National Science & Technology (2010BAD01B02), 111 project (B12006), NSFC (31171585), CSTC (201180001), Graduates Science and Technology Innovation Fund of Southwest University, China (Kb2011006) and the open funds of the National Key Laboratory of Crop Genetic Improvement, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qian.

Additional information

Communicated by R. Visser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 42 kb)

Supplementary material 2 (XLS 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Mei, J., Zhang, Y. et al. A large-scale introgression of genomic components of Brassica rapa into B. napus by the bridge of hexaploid derived from hybridization between B. napus and B. oleracea . Theor Appl Genet 126, 2073–2080 (2013). https://doi.org/10.1007/s00122-013-2119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2119-4

Keywords

Navigation