Log in

A dual tyrosine kinase inhibitor lapatinib suppresses overexpression of matrix metallopeptidase 1 (MMP1) in endometrial cancer

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Endometrial cancers have been recently molecularly characterized; amplifications of human epidermal growth factor receptor 2 (HER2) were seen in 25 % of the serous-like tumors, and mutations in the PI(3)K/AKT pathways were seen in 93 % of endometrioid tumors. These new findings about endometrial cancer suggest a potential for targeted therapy with lapatinib, a dual inhibitor of epidermal growth factor receptor and HER2 tyrosine kinases. However, the clinical efficacy of lapatinib in phase II clinical trials for the treatment of endometrial cancers was only minimal. In this study, we investigated the signaling changes induced by lapatinib in endometrial cancer, which may improve its therapeutic efficacy in molecularly selected patient groups. We identified one of the final molecular targets of lapatinib to be interstitial collagenase, matrix metallopeptidase 1 (MMP1). Lapatinib suppresses MMP1 through EGFR and HER2, and their downstream ERK and AKT signaling pathways. We also found that the activating protein-1 binding site of MMP1 promoter is required for its transcriptional activation, which may be unique for endometrial cancers. Our results also showed that forced expression of active ERK or active AKT mutants rescued MMP1 expression from lapatinib suppression, further suggesting the importance of molecular selection to find appropriate patients with endometrial cancer for future clinical trials with any targeted therapies.

Key message

  • MMP1 expression was high in tissues and sera in patients with endometrial cancer.

  • Lapatinib inhibited MMP1 via both HER2 and EGFR signaling pathways.

  • Both AKT and ERK need to be inhibited for efficient MMP1 suppression by lapatinib.

  • Activating protein-1 (AP-1) binding site of MMP1 promoter is uniquely required for MMP1 activation in endometrial cancer.

  • Suppression of both c-fos and c-Jun bound to AP1 binding site is required for lapatinib inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Honda T, Urabe R, Kurita T, Kagami S, Kawagoe T, Toki N, Matsuura Y, Hachisuga T (2012) Trends in the demographic and clinicopathological characteristics in Japanese patients with endometrial cancer, 1990–2010. Int J Womens Health 4:207–212

    PubMed Central  PubMed  Google Scholar 

  3. Cancer Registry Annual Report, 2010 Taiwan: Ministry of Health and Welfare, Executive Yuan 2012. http://www.hpa.gov.tw/BHPNet/English/Index.aspx. Accessed 20 Aug 2013

  4. Lin CH, Chen YC, Chiang CJ, Lu YS, Kuo KT, Huang CS, Cheng WF, Lai MS, You SL, Cheng AL (2012) The emerging epidemic of estrogen-related cancers in young women in a develo** Asian country. Int J Cancer 130:2629–2637

    Article  CAS  PubMed  Google Scholar 

  5. Creasman WT, Miller DS (2012) Adenocarcinoma of the uterine corpus. In: Di Saia PJ, Creasman WT, Mannel RS, McMeekin DS, Mutch DG (eds) Clinical gynecologic oncology, 8th edn. Elsevier, Philadelphia, pp 141–174

    Chapter  Google Scholar 

  6. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73

    Article  PubMed  Google Scholar 

  7. Kruser TJ, Wheeler DL (2010) Mechanisms of resistance to HER family targeting antibodies. Exp Cell Res 316:1083–1100

    Article  CAS  PubMed  Google Scholar 

  8. Aertgeerts K, Skene R, Yano J, Sang BC, Zou H, Snell G, Jennings A, Iwamoto K, Habuka N, Hirokawa A et al (2011) Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J Biol Chem 286:18756–18765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Konecny GE, Venkatesan N, Yang G, Dering J, Ginther C, Finn R, Rahmeh M, Fejzo MS, Toft D, Jiang SW et al (2008) Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells. Br J Cancer 98:1076–1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Leslie KK, Sill MW, Lankes HA, Fischer EG, Godwin AK, Gray H, Schilder RJ, Walker JL, Tewari K, Hanjani P et al (2012) Lapatinib and potential prognostic value of EGFR mutations in a Gynecologic Oncology Group phase II trial of persistent or recurrent endometrial cancer. Gynecol Oncol 127:345–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J, Johnson DH (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346:92–98

    Article  CAS  PubMed  Google Scholar 

  12. Jackman DM, Miller VA, Cioffredi LA, Yeap BY, Janne PA, Riely GJ, Ruiz MG, Giaccone G, Sequist LV, Johnson BE (2009) Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clin Cancer Res 15:5267–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, Seto T, Satouchi M, Tada H, Hirashima T et al (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 11:121–128

    Article  CAS  PubMed  Google Scholar 

  14. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388

    Article  CAS  PubMed  Google Scholar 

  15. Bao W, Fu HJ, Jia LT, Zhang Y, Li W, ** BQ, Yao LB, Chen SY, Yang AG (2010) HER2-mediated upregulation of MMP-1 is involved in gastric cancer cell invasion. Arch Biochem Biophys 499:49–55

    Article  CAS  PubMed  Google Scholar 

  16. Armstrong DA, Phelps LN, Vincenti MP (2009) CCAAT enhancer binding protein-beta regulates matrix metalloproteinase-1 expression in interleukin-1beta-stimulated A549 lung carcinoma cells. Mol Cancer Res 7:1517–1524

    Article  CAS  PubMed  Google Scholar 

  17. D'Andrea MR, Limiti MR, Bari M, Zambenedetti P, Montagutti A, Ricci F, Pappagallo GL, Sartori D, Vinante O, Mingazzini PL (2007) Correlation between genetic and biological aspects in primary non-metastatic breast cancers and corresponding synchronous axillary lymph node metastasis. Breast Cancer Res Treat 101:279–284

    Article  PubMed  Google Scholar 

  18. Park YH, Jung HH, Ahn JS, Im YH (2008) Ets-1 upregulates HER2-induced MMP-1 expression in breast cancer cells. Biochem Biophys Res Commun 377:389–394

    Article  CAS  PubMed  Google Scholar 

  19. Park S, Jung HH, Park YH, Ahn JS, Im YH (2011) ERK/MAPK pathways play critical roles in EGFR ligands-induced MMP1 expression. Biochem Biophys Res Commun 407:680–686

    Article  CAS  PubMed  Google Scholar 

  20. Knopfova L, Benes P, Pekarcikova L, Hermanova M, Masarik M, Pernicova Z, Soucek K, Smarda J (2012) c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis. Mol Cancer 11:15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang YP, Liu IJ, Chiang CP, Wu HC (2013) Astrocyte elevated gene-1 is associated with metastasis in head and neck squamous cell carcinoma through p65 phosphorylation and upregulation of MMP1. Mol Cancer 12:109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wang TH, Chao A, Tsai CL, Chang CL, Chen SH, Lee YS, Chen JK, Lin YJ, Chang PY, Wang CJ et al (2010) Stress-induced phosphoprotein 1 as a secreted biomarker for human ovarian cancer promotes cancer cell proliferation. Mol Cell Proteomics 9:1873–1884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chao A, Lin CY, Lee YS, Tsai CL, Wei PC, Hsueh S, Wu TI, Tsai CN, Wang CJ, Chao AS et al (2012) Regulation of ovarian cancer progression by microRNA-187 through targeting disabled homolog-2. Oncogene 31:764–775

    Article  CAS  PubMed  Google Scholar 

  24. El-Sahwi K, Bellone S, Cocco E, Cargnelutti M, Casagrade F, Bellone M, Abu-Khalaf M, Buza N, Tavassoli FA, Hui P et al (2010) In vitro activity of pertuzumab in combination with trastuzumab in uterine serous papillary adenocarcinoma. Br J Cancer 102:134–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Nishida M (2002) The Ishikawa cells from birth to the present. Hum Cell 15:104–117

    Article  PubMed  Google Scholar 

  26. Lin CY, Tan BC, Liu H, Shih CJ, Chien KY, Lin CL, Yung BY (2010) Dephosphorylation of nucleophosmin by PP1beta facilitates pRB binding and consequent E2F1-dependent DNA repair. Mol Biol Cell 21:4409–4417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Snoek-van Beurden PA, Von den Hoff JW (2005) Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques 38:73–83

    Article  CAS  PubMed  Google Scholar 

  28. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hall MC, Young DA, Waters JG, Rowan AD, Chantry A, Edwards DR, Clark IM (2003) The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1. J Biol Chem 278:10304–10313

    Article  CAS  PubMed  Google Scholar 

  30. Moser PL, Kieback DG, Hefler L, Tempfer C, Neunteufel W, Gitsch G (1999) Immunohistochemical detection of matrix metalloproteinases (MMP) 1 and 2, and tissue inhibitor of metalloproteinase 2 (TIMP 2) in stage IB cervical cancer. Anticancer Res 19:4391–4393

    CAS  PubMed  Google Scholar 

  31. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354

    Article  CAS  PubMed  Google Scholar 

  32. Kumler I, Tuxen MK, Nielsen DL (2014) A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat Rev 40:259–270

    Article  CAS  PubMed  Google Scholar 

  33. Motoyama AB, Hynes NE, Lane HA (2002) The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res 62:3151–3158

    CAS  PubMed  Google Scholar 

  34. Eichhorn PJ, Gili M, Scaltriti M, Serra V, Guzman M, Nijkamp W, Beijersbergen RL, Valero V, Seoane J, Bernards R et al (2008) Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 68:9221–9230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M, Untch M, Rusnak DW, Spehar G, Mullin RJ et al (2006) Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66:1630–1639

    Article  CAS  PubMed  Google Scholar 

  36. Press MF, Finn RS, Cameron D, Di Leo A, Geyer CE, Villalobos IE, Santiago A, Guzman R, Gasparyan A, Ma Y et al (2008) HER-2 gene amplification, HER-2 and epidermal growth factor receptor mRNA and protein expression, and lapatinib efficacy in women with metastatic breast cancer. Clin Cancer Res 14:7861–7870

    Article  CAS  PubMed  Google Scholar 

  37. LaBonte MJ, Manegold PC, Wilson PM, Fazzone W, Louie SG, Lenz HJ, Ladner RD (2009) The dual EGFR/HER-2 tyrosine kinase inhibitor lapatinib sensitizes colon and gastric cancer cells to the irinotecan active metabolite SN-38. Int J Cancer 125:2957–2969

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Department of Health, Taiwan (DOH101-TD-B-111-005), and Chang Gung Medical Research Foundation (CMRPG391441-4, CMRPG3C0281). The authors are grateful for the English editing by Dr. Shihyee Mimi Wang (Department of Obstetrics and Gynecology, White Memorial Medical Center, Los Angeles, CA).

Conflict of interest

The authors declared no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chyong-Huey Lai.

Additional information

Chiao-Yun Lin, Angel Chao, and Tzu-Hao Wang contribute equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 670 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CY., Chao, A., Wang, TH. et al. A dual tyrosine kinase inhibitor lapatinib suppresses overexpression of matrix metallopeptidase 1 (MMP1) in endometrial cancer. J Mol Med 92, 969–981 (2014). https://doi.org/10.1007/s00109-014-1163-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1163-0

Keywords

Navigation