Log in

Inhibition of MAPK and VEGFR by Sorafenib Controls the Progression of Endometriosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Introduction

Sorafenib is a strong multikinase inhibitor targeting 2 different pathways of endometriosis pathogenesis: RAF kinase and vascular endothelial growth factor receptor (VEGFR). We investigate whether Sorafenib could control the growth of endometriotic lesions both in vitro and in vivo.

Methods

Stromal primary cells were extracted from endometrial and endometriotic biopsies from patients with (n = 10) and without (n = 10) endometriosis. Proliferation, apoptosis, mitogen-activated protein kinases, and VEGFR-2 autophosphorylation were explored with and without Sorafenib treatment. Human endometriotic lesions were implanted in 30 nude mice randomized according to Sorafenib or placebo treatment.

Results

Treating endometriotic cells with Sorafenib abrogated the phosphorylation of extracellular signal-regulated kinase in stromal cells of women with endometriosis compared to controls. In addition, this study highlights the antiangiogenic role of Sorafenib which translates as a decreased phosphorylated VEGFR-2–VEGFR-2 ratio in endometriosis. Using a xenogenic mouse model of endometriosis, we confirmed that Sorafenib regulates the endometriosis activity in vivo by targeting endometriosis-related proliferation and inflammation.

Conclusion

Our data suggest that Sorafenib controls the growth of endometriotic lesions in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Ziegler D, Borghese B, Chapron C. Endometriosis and infertility: pathophysiology and management. Lancet. 2010;376(9742):730–738.

    Article  PubMed  CAS  Google Scholar 

  2. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–1799.

    Article  PubMed  Google Scholar 

  3. Berkley KJ, Rapkin AJ, Papka RE. The pains of endometriosis. Science. 2005;308(5728):1587–1589.

    Article  CAS  PubMed  Google Scholar 

  4. Sampson JA. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14:442–469.

    Article  Google Scholar 

  5. Chapron C, Chopin N, Borghese B, et al. Deeply infiltrating endo-metriosis: pathogenetic implications of the anatomical distribution. Hum Reprod. 2006;21(7):1839–1845.

    Article  PubMed  Google Scholar 

  6. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    Article  CAS  PubMed  Google Scholar 

  7. Hsu CY, Hsieh TH, Tsai CF, et al. miRNA-199a-5p regulates VEGFA in endometrial mesenchymal stem cells and contributes to the pathogenesis of endometriosis. J Pathol. 2014;232(3):330–343.

    Article  CAS  PubMed  Google Scholar 

  8. Laschke MW, Giebels C, Menger MD. Vasculogenesis: a new piece of the endometriosis puzzle. Hum Reprod Update. 2011;17(5):628–636.

    Article  CAS  PubMed  Google Scholar 

  9. Laschke MW, Menger MD. In vitro and in vivo approaches to study angiogenesis in the pathophysiology and therapy of endo-metriosis. Hum Reprod Upd. 2007;13(4):331–342.

    Article  CAS  Google Scholar 

  10. Laschke MW, Menger MD. Anti-angiogenic treatment strategies for the therapy of endometriosis. Hum Reprod Update. 2012;18(6):682–702.

    Article  CAS  PubMed  Google Scholar 

  11. Anaf V, Simon P, El Nakadi I, et al. Relationship between endo-metriotic foci and nerves in rectovaginal endometriotic nodules. Hum Reprod. 2000;15(8):1744–1750.

    Article  CAS  PubMed  Google Scholar 

  12. Yuge A, Nasu K, Matsumoto H, Nishida M, Narahara H. Collagen gel contractility is enhanced in human endometriotic stromal cells: a possible mechanism underlying the pathogenesis of endometriosis-associated fibrosis. Hum Reprod. 2007;22(4):938–944.

    Article  CAS  PubMed  Google Scholar 

  13. Itoga T, Matsumoto T, Takeuchi H, et al. Fibrosis and smooth muscle metaplasia in rectovaginal endometriosis. Pathol Int. 2003;53(6):371–375.

    Article  PubMed  Google Scholar 

  14. Santulli P, Marcellin L, Noel JC, et al. Sphingosine pathway deregulation in endometriotic tissues. Fertil Steril. 2012;97(4):904–911.

    Article  CAS  PubMed  Google Scholar 

  15. Santulli P, Borghese B, Noel JC, et al. Hormonal Therapy Deregulates Prostaglandin-Endoperoxidase Synthase 2 (PTGS2) expression in endometriotic tissues. J Clin Endocrinol Metab. 2014;99(3):881–890.

    Article  CAS  PubMed  Google Scholar 

  16. Leconte M, Chapron C, Dousset B. Surgical treatment of rectal endometriosis. J Chir (Paris). 2007;144(1):5–10.

    Article  CAS  Google Scholar 

  17. Rogers PA, D’Hooghe TM, Fazleabas A, et al. Priorities for endo-metriosis research: recommendations from an international consensus workshop. Reprod Sci. 2009;16(4):335–346.

    Article  PubMed  Google Scholar 

  18. Ngo C, Chereau C, Nicco C, Weill B, Chapron C, Batteux F. Reactive oxygen species controls endometriosis progression. Am J Pathol. 2009;175(1):225–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ngo C, Nicco C, Leconte M, et al. Protein kinase inhibitors can control the progression of endometriosis in vitro and in vivo. J Pathol. 2010;222(2):148–157.

    Article  CAS  PubMed  Google Scholar 

  20. Li MQ, Shao J, Meng YH, et al. NME1 suppression promotes growth, adhesion and implantation of endometrial stromal cells via Akt and MAPK/Erk1/2 signal pathways in the endometriotic milieu. Hum Reprod. 2013;28(10):2822–2831.

    Article  CAS  PubMed  Google Scholar 

  21. Leconte M, Nicco C, Ngo C, et al. The mTOR/AKT inhibitor tem-sirolimus prevents deep infiltrating endometriosis in mice. Am J Pathol. 2011;179(2):880–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim TH, Yu Y, Luo L, Lydon JP, Jeong JW, Kim JJ. Activated AKT pathway promotes establishment of endometriosis. Endocrinology. 2014;155(5):1921–1930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Santulli P, Chouzenoux S, Fiorese M, et al. Protein oxidative stress markers in peritoneal fluids of women with deep infiltrating endometriosis are increased. Hum Reprod. 2015;30(1):49–60.

    Article  CAS  PubMed  Google Scholar 

  24. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004;4(12):937–947.

    Article  CAS  PubMed  Google Scholar 

  25. Streuli I, de Ziegler D, Santulli P, et al. An update on the pharmacological management of endometriosis. Expert Opin Pharmac-other. 2013;14(3):291–305.

    Article  CAS  PubMed  Google Scholar 

  26. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/ MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–7109.

    Article  CAS  PubMed  Google Scholar 

  27. Coriat R, Nicco C, Chereau C, et al. Sorafenib-induced hepatocel-lular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol Cancer Ther. 2012;11(10):2284–2293.

    Article  CAS  PubMed  Google Scholar 

  28. Chapron C, Lafay-Pillet MC, Monceau E, et al. Questioning patients about their adolescent history can identify markers associated with deep infiltrating endometriosis. Fertil Steril. 2011;95(3):877–881.

    Article  PubMed  Google Scholar 

  29. Chapron C, Souza C, de Ziegler D, et al. Smoking habits of 411 women with histologically proven endometriosis and 567 unaffected women. Fertil Steril. 2010;94(6):2353–2355.

    Article  PubMed  Google Scholar 

  30. Revised American Fertility Society classification of endometriosis: 1985. Fertil Steril. 1985;43(3):351–352.

    Article  Google Scholar 

  31. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–263.

    Article  CAS  PubMed  Google Scholar 

  32. Chapron C, Bourret A, Chopin N, et al. Surgery for bladder endo-metriosis: long-term results and concomitant management of associated posterior deep lesions. Hum Reprod. 2010;25(4):884–889.

    Article  PubMed  Google Scholar 

  33. Thubert T, Santulli P, Marcellin L, et al. Measurement of hs-CRP is irrelevant to diagnose and stage endometriosis: prospective study of 834 patients. Am J Obstet Gynecol. 2014;210(6):533. e531–533. e510.

    Article  CAS  PubMed  Google Scholar 

  34. Kavian N, Servettaz A, Marut W, et al. Sunitinib inhibits the phos-phorylation of platelet-derived growth factor receptor beta in the skin of mice with scleroderma-like features and prevents the development of the disease. Arthritis Rheum. 2012;64(6):1990–2000.

    Article  CAS  PubMed  Google Scholar 

  35. AFS. Revised American Fertility Society classification of endo-metriosis: 1985. Fertil Steril. 1985;43(3):351–352.

    Article  Google Scholar 

  36. Moggio A, Pittatore G, Cassoni P, Marchino GL, Revelli A, Bussolati B. Sorafenib inhibits growth, migration, and angio-genic potential of ectopic endometrial mesenchymal stem cells derived from patients with endometriosis. Fertil Steril. 2012;98(6):1521–1530. e1522.

    Article  CAS  PubMed  Google Scholar 

  37. Ozer H, Boztosun A, Acmaz G, Atilgan R, Akkar OB, Kosar MI. The efficacy of bevacizumab, sorafenib, and retinoic acid on rat endometriosis model. Reprod Sci. 2013;20(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  38. Igney FH, Asadullah K, Zollner TM. Techniques: species’ finest blend–humanized mouse models in inflammatory skin disease research. Trends Pharmacol Sci. 2004;25(10):543–549.

    Article  CAS  PubMed  Google Scholar 

  39. Carter CA, Chen C, Brink C, et al. Sorafenib is efficacious and tolerated in combination with cytotoxic or cytostatic agents in preclinical models of human non-small cell lung carcinoma. Cancer Chemother Pharmacol. 2007;59(2):183–195.

    Article  CAS  PubMed  Google Scholar 

  40. Tang TC, Man S, Lee CR, Xu P, Kerbel RS. Impact of metronomic UFT/cyclophosphamide chemotherapy and antiangiogenic drug assessed in a new preclinical model of locally advanced orthotopic hepatocellular carcinoma. Neoplasia. 2010;12(3):264–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krajewska J, Handkiewicz-Junak D, Jarzab B. Sorafenib for the treatment of thyroid cancer: an updated review. Expert Opin Pharmacother. 2015;16(4):573–583.

    Article  CAS  PubMed  Google Scholar 

  42. Kim S, Yazici YD, Calzada G, et al. Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Mol Cancer Ther. 2007;6(6):1785–1792.

    Article  CAS  PubMed  Google Scholar 

  43. McLaren J. Vascular endothelial growth factor and endometriotic angiogenesis. Hum Reprod Update. 2000;6(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  44. McLaren J, Prentice A, Charnock-Jones DS, et al. Vascular endothelial growth factor is produced by peritoneal fluid macro-phages in endometriosis and is regulated by ovarian steroids. J Clin Invest. 1996;98(2):482–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McLaren J, Prentice A, Charnock-Jones DS, Smith SK. Vascular endothelial growth factor (VEGF) concentrations are elevated in peritoneal fluid of women with endometriosis. Hum Reprod. 1996;11(1):220–223.

    Article  CAS  PubMed  Google Scholar 

  46. Nap AW, Griffioen AW, Dunselman GA, et al. Antiangiogenesis therapy for endometriosis. J Clin Endocrinol Metab. 2004;89(3):1089–1095.

    Article  CAS  PubMed  Google Scholar 

  47. Vodolazkaia A, El-Aalamat Y, Popovic D, et al. Evaluation of a panel of 28 biomarkers for the non-invasive diagnosis of endome-triosis. Hum Reprod. 2012;27(9):2698–2711.

    Article  CAS  PubMed  Google Scholar 

  48. Santulli P, Chouzenoux S, Fiorese M, et al. Protein oxidative stress markers in peritoneal fluids of women with deep infiltrating endometriosis are increased. Hum Reprod. 2015;30(1):49–60.

    Article  CAS  PubMed  Google Scholar 

  49. Becker CM, Rohwer N, Funakoshi T, et al. 2-methoxyestradiol inhibits hypoxia-inducible factor-1{alpha} and suppresses growth of lesions in a mouse model of endometriosis. Am J Pathol. 2008;172(2):534–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu M, Zheng YL, **e XY, et al. Sorafenib blocks the HIF-1alpha/ VEGFA pathway, inhibits tumor invasion, and induces apoptosis in hepatoma cells. DNA Cell Biol. 2014;33(5):275–281.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Santulli MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leconte, M., Santulli, P., Chouzenoux, S. et al. Inhibition of MAPK and VEGFR by Sorafenib Controls the Progression of Endometriosis. Reprod. Sci. 22, 1171–1180 (2015). https://doi.org/10.1177/1933719115592708

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115592708

Keywords

Navigation