Log in

Development of convenient crystallization inhibition assays for structure-activity relationship studies in the discovery of crystallization inhibitors

  • Brief Report
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Kidney stone diseases are increasing globally in prevalence and recurrence rates, indicating an urgent medical need for develo** new therapies that can prevent stone formation. One approach we have been working on is to develop small molecule inhibitors that can interfere with the crystallization process of the chemical substances that form the stones. For these drug discovery efforts, it is critical to have available easily accessible assay methods to evaluate the potential inhibitors and rank them for structure-activity relationship studies. Herein, we report a convenient, medium-to-high throughput assay platform using, as an example, the screening and evaluation of inhibitors of L-cystine crystallization for the prevention of kidney stones in cystinuria. The assay involves preparing a supersaturated solution, followed by incubating small volumes (<1 mL) of the supersaturated solution with test inhibitors for 72 hours, and finally measuring L-cystine concentrations in the supernatants after centrifugation using either a colorimetric or fluorometric method. Compared to traditional techniques for studying crystallization inhibitors, this miniaturized multi-well assay format is simple to implement, cost-effective, and widely applicable in determining and distinguishing the activities of compounds that inhibit crystallization. This assay has been successfully employed to discover L-cystine diamides as highly potent inhibitors of L-cystine crystallization such as LH708 with an EC50 of 0.058 µM, 70-fold more potent than L-CDME (EC50 = 4.31 µM).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

L-CDME:

L-cystine dimethyl ester

CDNMP:

L-cystine bis(N′-methylpiperazide) (LH708)

DTT:

dithiothreitol

EC2x :

the inhibitor concentration required to double the apparent aqueous solubility

EC50 :

the inhibitor concentration required to achieve 50% of the maximal apparent aqueous solubility

ESWL:

extracorporeal shockwave lithotripsy

HPLC:

high performance liquid chromatography

ISE:

ion-selective electrodes

NBC:

N-Boc-L-cysteine

OPA:

o-phthaldialdehyde

PBS:

phosphate buffered saline

Slc3a1 :

solute carrier family 3 member 1

References

  1. Stamatelou K, Goldfarb DS. Epidemiology of kidney stones. Healthcare. 2023;11:424 https://doi.org/10.3390/healthcare11030424

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hill AJ, Basourakos SP, Lewicki P, Wu X, Arenas-Gallo C, Chuang D, et al. Incidence of kidney stones in the United States: The continuous National health and nutrition examination survey. J Urol. 2022;207:851–6. https://doi.org/10.1097/JU.0000000000002331

    Article  PubMed  Google Scholar 

  3. Daudon M, Jungers P, Bazin D, Williams JC Jr. Recurrence rates of urinary calculi according to stone composition and morphology. Urolithiasis. 2018;46:459–70. https://doi.org/10.1007/s00240-018-1043-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vaughan LE, Enders FT, Lieske JC, Pais VM, Rivera ME, Mehta RA, et al. Predictors of symptomatic kidney stone recurrence after the first and subsequent episodes. Mayo Clin Proc. 2019;94:202–10. https://doi.org/10.1016/j.mayocp.2018.09.016

    Article  CAS  PubMed  Google Scholar 

  5. Saigal CS, Joyce G, Timilsina AR, the Urologic Diseases in America P. Direct and indirect costs of nephrolithiasis in an employed population: Opportunity for disease management. Kidney Int. 2005;68:1808–14. https://doi.org/10.1111/j.1523-1755.2005.00599.x

    Article  PubMed  Google Scholar 

  6. Alelign T, Petros B. Kidney stone disease: An update on current concepts. Adv Urol. 2018;2018:3068365 https://doi.org/10.1155/2018/3068365

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee MH, Sahota A, Ward MD, Goldfarb DS. Cystine growth inhibition through molecular mimicry: A new paradigm for the prevention of crystal diseases. Curr Rheumatol Rep. 2015;17:33 https://doi.org/10.1007/s11926-015-0510-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rimer JD, An Z, Zhu Z, Lee MH, Goldfarb DS, Wesson JA, et al. Crystal growth inhibitors for the prevention of L-cystine kidney stones through molecular design. Science. 2010;330:337–41. https://doi.org/10.1126/science.1191968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu L, Yang Y, Aloysius H, Albanyan H, Yang M, Liang J-J, et al. L-Cystine diamides as L-cystine crystallization inhibitors for cystinuria. J Med Chem. 2016;59:7293–8. https://doi.org/10.1021/acs.jmedchem.6b00647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Y, Albanyan H, Lee S, Aloysius H, Liang JJ, Kholodovych V, et al. Design, synthesis, and evaluation of L-cystine diamides as L-cystine crystallization inhibitors for cystinuria. Bioorg Med Chem Lett. 2018;28:1303–8. https://doi.org/10.1016/j.bmcl.2018.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farmanesh S, Chung J, Chandra D, Sosa RD, Karande P, Rimer JD. High-throughput platform for design and screening of peptides as inhibitors of calcium oxalate monohydrate crystallization. J Cryst Growth. 2013;373:13–9. https://doi.org/10.1016/j.jcrysgro.2012.09.018

    Article  CAS  Google Scholar 

  12. Baumann JM, Affolter B, Brenneisen J, Siegrist HP. Measurement of metastability, growth and aggregation of calcium oxalate in native urine. A N. approach Clin Exp stone Res Urol Int. 1997;59:214–20. https://doi.org/10.1159/000283066

    Article  CAS  Google Scholar 

  13. Farmanesh S, Ramamoorthy S, Chung J, Asplin JR, Karande P, Rimer JD. Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization. J Am Chem Soc. 2014;136:367–76. https://doi.org/10.1021/ja410623q

    Article  CAS  PubMed  Google Scholar 

  14. Fischer V, Landfester K, Muñoz-Espí R. Stabilization of calcium oxalate metastable phases by oligo(l-glutamic acid): effect of peptide chain length. Cryst Growth Des. 2011;11:1880–90. https://doi.org/10.1021/cg200058d

    Article  CAS  Google Scholar 

  15. Grases F, Rodriguez A, Costa-Bauza A. Theobromine inhibits uric acid crystallization. A potential application in the treatment of uric acid nephrolithiasis. PLoS One. 2014;9:e111184 https://doi.org/10.1371/journal.pone.0111184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hennequin C, Lalanne V, Daudon M, Lacour B, Drueke T. A new approach to studying inhibitors of calcium oxalate crystal growth. Urol Res. 1993;21:101–8. https://doi.org/10.1007/BF01788827

    Article  CAS  PubMed  Google Scholar 

  17. Saso L, Valentini G, Casini ML, Mattei E, Panzironi C, Silvestrini B. Development of a turbidimetric assay to study the effect of urinary components on calcium oxalate precipitation. Urol Int. 1998;60:47–52. https://doi.org/10.1159/000030202

    Article  CAS  PubMed  Google Scholar 

  18. Olafson KN, Ketchum MA, Rimer JD, Vekilov PG. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine. Proc Natl Acad Sci USA. 2015;112:4946–51. https://doi.org/10.1073/pnas.1501023112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Olafson KN, Nguyen TQ, Rimer JD, Vekilov PG. Antimalarials inhibit hematin crystallization by unique drug-surface site interactions. Proc Natl Acad Sci USA. 2017;114:7531–6. https://doi.org/10.1073/pnas.1700125114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abela GS, Vedre A, Janoudi A, Huang R, Durga S, Tamhane U. Effect of statins on cholesterol crystallization and atherosclerotic plaque stabilization. Am J Cardiol. 2011;107:1710–7. https://doi.org/10.1016/j.amjcard.2011.02.336

    Article  CAS  PubMed  Google Scholar 

  21. Sahota A, Tischfield JA, Goldfarb DS, Ward MD, Hu L. Cystinuria: genetic aspects, mouse models, and a new approach to therapy. Urolithiasis. 2019;47:57–66. https://doi.org/10.1007/s00240-018-1101-7

    Article  PubMed  Google Scholar 

  22. Basavaraj DR, Biyani CS, Browning AJ, Cartledge JJ. The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones. EAU-EBU Update Ser. 2007;5:126–36. https://doi.org/10.1016/j.eeus.2007.03.002

    Article  Google Scholar 

  23. Carta R, Tola G. Solubilities of l-cystine, l-tyrosine, l-leucine, and glycine in aqueous solutions at various pHs and NaCl concentrations. J Chem Eng Data. 1996;41:414–7. https://doi.org/10.1021/je9501853

    Article  CAS  Google Scholar 

  24. Königsberger E, Wang Z, Königsberger L-C. Solubility of L-cystine in NaCl and artificial urine solutions. Monatsh Chem. 2000;131:39–45. https://doi.org/10.1007/s007060050004

    Article  Google Scholar 

  25. Brady CT, Giesen CD, Voskoboev N, Chirackal RS, Gavrilov DK, Flanagan RM, et al. Cyanide-nitroprusside colorimetric assay: A rapid colorimetric screen for urinary cystine. J Appl Lab Med. 2017;2:55–64. https://doi.org/10.1373/jalm.2016.022582

    Article  CAS  PubMed  Google Scholar 

  26. Wu JT, Wilson LW, Christensen S. Conversion of a qualitative screening test to a quantitative measurement of urinary cystine and homocystine. Ann Clin Lab Sci. 1992;22:18–29.

    CAS  PubMed  Google Scholar 

  27. Ettinger B, Kolb FO. Factors involved in crystal formation in cystinuria. In vivo and in vitro crystallization dynamics and a simple, quantitative colorimetic assay for cystine. J Urol. 1971;106:106–10. https://doi.org/10.1016/s0022-5347(17)61236-9

    Article  CAS  PubMed  Google Scholar 

  28. Birwé H, Hesse A. High-performance liquid chromatographic determination of urinary cysteine and cystine. Clin Chim Acta. 1991;199:33–42. https://doi.org/10.1016/0009-8981(91)90006-X

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

LH conceived of the idea for the development of the crystallization inhibition assay and the application of the colorimetric and fluorometric methods for measuring L-cystine concentration. YY developed and optimized the fluorometric assay. HA applied the colorimetric assay in evaluating inhibitor potency. JY and YW were responsible for further optimization of the assay protocol to ensure assay reproducibility. HA, YY, JY, and YW performed the statistical analyses. JY wrote the initial manuscript draft. JY and LH worked on revising subsequent manuscript drafts. All authors critically reviewed and approved the final manuscript draft. This work was supported by grant R01DK112782 from the National Institutes of Health. The assay protocol has been successfully applied in the following original articles: Hu et al. 2016 [9] and Yang et al. 2018 [10].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longqin Hu.

Ethics declarations

Conflict of interest

Some authors are inventors of patents on compounds discussed or discovered using the assay described in this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Albanyan, H., Wang, Y. et al. Development of convenient crystallization inhibition assays for structure-activity relationship studies in the discovery of crystallization inhibitors. Med Chem Res 32, 1391–1399 (2023). https://doi.org/10.1007/s00044-023-03061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03061-7

Keywords

Navigation