Log in

Polynomial stability of transmission system for coupled Kirchhoff plates

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the asymptotic behavior of transmission system for coupled Kirchhoff plates, where one equation is conserved and the other has dissipative property, and the dissipation mechanism is given by fractional dam** \((-\Delta )^{2\theta }v_t\) with \(\theta \in [\frac{1}{2},1]\). By using the semigroup method and the multiplier technique, we obtain the exact polynomial decay rates, and find that the polynomial decay rate of the system is determined by the inertia/elasticity ratios and the fractional dam** order. Specifically, when the inertia/elasticity ratios are not equal and \(\theta \in [\frac{1}{2},\frac{3}{4}]\), the polynomial decay rate of the system is \(t^{-1/(10-4\theta )}\). When the inertia/elasticity ratios are not equal and \(\theta \in [\frac{3}{4},1]\), the polynomial decay rate of the system is \(t^{-1/(4+4\theta )}\). When the inertia/elasticity ratios are equal, the polynomial decay rate of the system is \(t^{-1/(4+4\theta )}\). Furthermore it has been proven that the obtained decay rates are all optimal. The obtained results extend the results of Oquendo and Suárez (Z Angew Math Phys 70(3):88, 2019) for the case of fractional dam** exponent \(2\theta \) from [0, 1] to [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alabau-Boussouira, F., Cannarsa, P., Guglielmi, R.: Indirect stabilization of weakly coupled system with hybrid boundary conditions. Math. Control Relat. Fields. 1(4), 413–436 (2011)

    Article  MathSciNet  Google Scholar 

  2. Alabau, F., Cannarsa, P., Komornik, V.: Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Equ. 2(2), 127–150 (2002)

    Article  MathSciNet  Google Scholar 

  3. Alabau-Boussouira, F., Léautaud, M.: Indirect stabilization of locally coupled wave-type systems. ESAIM Control Optim. Calc. Var. 18(2), 548–582 (2012)

    Article  MathSciNet  Google Scholar 

  4. Astudillo, M., Oquendo, H.P.: Stability results for a Timoshenko system with a fractional operator in the memory. Appl. Math. Optim. 83(3), 1247–1275 (2021)

    Article  MathSciNet  Google Scholar 

  5. Ammari, K., Shel, F., Tebou, L.: Regularity and stability of the semigroup associated with some interacting elastic systems I: a degenerate dam** case. J. Evol. Equ. 21(4), 4973–5002 (2021)

    Article  MathSciNet  Google Scholar 

  6. Bravo, J.C.V., Oquendo, H.P., Rivera, J.E.M.: Optimal decay rates for Kirchhoff plates with intermediate dam**. TEMA Tend. Mat. Apl. Comput. 21(2), 261–269 (2020)

    Article  MathSciNet  Google Scholar 

  7. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347(2), 455–478 (2010)

    Article  MathSciNet  Google Scholar 

  8. Dell’Oro, F., Muñoz Rivera, J.E., Pata, V.: Stability properties of an abstract system with applications to linear thermoelastic plates. J. Evol. Equ. 13(4), 777–794 (2013)

    Article  MathSciNet  Google Scholar 

  9. Fernández Sare, H.D., Muñoz Rivera, J.E.: Optimal rates of decay in 2-d thermoelasticity with second sound. J. Math. Phys. 53(7), 13 (2012)

    Article  MathSciNet  Google Scholar 

  10. Guglielmi, R.: Indirect stabilization of hyperbolic systems through resolvent estimates. Evol. Equ. Control Theory. 6(1), 59–75 (2017)

    Article  MathSciNet  Google Scholar 

  11. Hajej, A., Hajjej, Z., Tebou, L.: Indirect stabilization of weakly coupled Kirchhoff plate and wave equations with frictional dam**. J. Math. Anal. Appl. 474(2), 290–308 (2019)

    Article  MathSciNet  Google Scholar 

  12. Hao, J., Liu, Z.: Stability of an abstract system of coupled hyperbolic and parabolic equations. Z. Angew. Math. Phys. 64(4), 1145–1159 (2013)

    Article  MathSciNet  Google Scholar 

  13. Hao, J., Liu, Z., Yong, J.: Regularity analysis for an abstract system of coupled hyperbolic and parabolic equations. J. Differ. Equ. 259(9), 4763–4798 (2015)

    Article  MathSciNet  Google Scholar 

  14. Komornik, V.: Exact controllability and stabilization, The Multiplier Method. Res. Appl. Math., Masson, Paris. Wiley, Chichester, RAM (1994)

  15. Kuang, Z., Liu, Z., Tebou, L.: Optimal semigroup regularity for velocity coupled elastic systems: a degenerate fractional dam** case. ESAIM Control Optim. Calc. Var. 28(4), 20 (2022)

    MathSciNet  Google Scholar 

  16. Keyantuo, V., Tebou, L., Warma, M.: A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: between the Euler-Bernoulli and Kirchoff models. Discrete Contin. Dyn. Syst. 40(5), 2875–2889 (2020)

    Article  MathSciNet  Google Scholar 

  17. Lagnese, J.E.: Boundary stabilization of thin plates. SIAM Stud. Appl. Math. Philadelphia, PA, vol.10 (1989)

  18. Liu, Z., Rao, B.: Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56(4), 630–644 (2005)

    Article  MathSciNet  Google Scholar 

  19. Liu, Z., Zheng, S.: Semigroups associated with dissipative systems. Chapman & Hall / CRC Res. Notes Math. Boca Raton, FL, vol.398 (1999)

  20. Muñoz Rivera, J.E., Racke, R.: Large solution and smoothing properties for nonlinear thermoelastic systems. J. Differ. Equ. 127(2), 454–483 (1996)

    Article  MathSciNet  Google Scholar 

  21. Oquendo, H.P., Astudillo, M.: Optimal decay for plates with rotational inertia and memory. Math. Nachr. 292(8), 1800–1810 (2019)

    Article  MathSciNet  Google Scholar 

  22. Oquendo, H.P., Da Luz, C.R.: Asymptotic behavior for Timoshenko systems with fractional dam**. Asymptot. Anal. 118(1–2), 123–142 (2020)

    MathSciNet  Google Scholar 

  23. Oquendo, H.P., Suárez, F.M.S.: Exact decay rates for coupled plates with partial fractional dam**. Z. Angew. Math. Phys. 70(3), 88 (2019)

    Article  MathSciNet  Google Scholar 

  24. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci., vol. 44. Springer, New York (1983)

    Book  Google Scholar 

  25. Russell, D.L.: A general framework for the study of indirect dam** mechanisms in elastic systems. J. Math. Anal. Appl. 173(2), 339–358 (1993)

    Article  MathSciNet  Google Scholar 

  26. Shibata, Y.: On the exponential decay of the energy of a linear thermoelastic plate. Mat. Apl. Comput. 13(2), 81–102 (1994)

    MathSciNet  Google Scholar 

  27. Suárez, F.M.S., Mendes, F.B.R.: A Gevrey class semigroup, exponential decay and Lack of analyticity for a system formed by a Kirchhoff-Love plate equation and the equation of a membrane-like electric network with indirect fractional dam**. ar**v:1908.04826v3

  28. Suárez, F.M.S., Oquendo, H.P.: Optimal decay rates for partially dissipative plates with rotational inertia. Acta Appl. Math. 166, 131–146 (2020)

    Article  MathSciNet  Google Scholar 

  29. Tebou, L.: Regularity and stability for a plate model involving fractional rotational forces and dam**. Z. Angew. Math. Phys. 72(4), 13 (2021)

    Article  MathSciNet  Google Scholar 

  30. Tyszka, G.F.: Effects of fractional memory on coupled waves and plates. Doctoral thesis. Universidade Federal do Paraná (2022)

Download references

Funding

This study was funded by National Natural Science Foundation of China (12271315), the special fund for Science and Technology Innovation Teams of Shanxi Province (202204051002015), Fundamental Research Program of Shanxi Province (202203021221018). The authors are highly grateful to **angkun Li for her picture in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghao Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by National Natural Science Foundation of China (12271315), the special fund for Science and Technology Innovation Teams of Shanxi Province (202204051002015), Fundamental Research Program of Shanxi Province (202203021221018).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Hao, J. & Zhang, Y. Polynomial stability of transmission system for coupled Kirchhoff plates. Z. Angew. Math. Phys. 75, 140 (2024). https://doi.org/10.1007/s00033-024-02287-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02287-8

Keywords

Mathematics Subject Classification

Navigation