Log in

Stabilization of transmission system of Kirchhoff plate and wave equations with a localized Kelvin–Voigt dam**

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the stabilization for the Kirchhoff plate and equations connected by transmission conditions. We show that the energy of the transmission system is stable with logarithmic decay rate when feedback control acts on the small part of the plate as a viscoelastic material with Kelvin–Voigt constitutive relation. The proof is based on a new resolvent estimate by using some careful analysis for Kirchhoff plate-wave transmission system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ammari, F. Hassine, L. Robbiano, Stabilization for the wave equation with singular Kelvin-Voigt dam**, ar**v:1805.10430.

  2. K. Ammari, M. Jellouli, M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Netw. Heterog. Media 4 (1) (2009) 19-34.

    Article  MathSciNet  Google Scholar 

  3. K. Ammari, S. Nicaise, Stabilization of a transmission wave/plate equation, J. Differential Equations 249 (2010) 707-727.

    Article  MathSciNet  Google Scholar 

  4. K. Ammari, G. Vodev, Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation, Cubo 11 (2009) 39-49.

    MathSciNet  MATH  Google Scholar 

  5. W. D. Bastos, C. A. Raposo, Transmission problem for waves with frictional dam**. Electronic J. Differential Equations 2007 (60) (2007) 1-10.

    MathSciNet  MATH  Google Scholar 

  6. C. J. K. Batty, T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ. 8 (2008) 765-780.

    Article  MathSciNet  Google Scholar 

  7. M. Bellassoued, Carleman estimates and distribution of resonnances for the transparent obstace and application to the stabilization, Asymptot. Anal. 35 (2003) 257-279.

    MathSciNet  MATH  Google Scholar 

  8. M. Cavalcanti, V.D. Cavalcanti, L. Téou, Stabilization of the wave equation with localized compensating frictional and Kelvin-Voigt dissipating mechanisms, Electronic J. Diffential Equations 2017 (83) (2017) 1-18.

    MATH  Google Scholar 

  9. S. Chai, Uniform decay rate for the transmission wave equations with variable coefficients, J. Syst. Sci. Complex. 24(2) (2011) 253-260.

    Article  MathSciNet  Google Scholar 

  10. S. Chai, K. Liu, Boundary stabilization of the transmission of wave equations with variable coefficients, Chinese Ann. Math. Ser. A 26(5) (2005) 605-612.

    MathSciNet  MATH  Google Scholar 

  11. S. Chen, K. Liu, Z. Liu, Spectrum and stability for elastic systems with global or local Kelvin-Voigt dam**, SIAM J. Appl. Math. 59 (2) (1998) 651-668.

    Article  MathSciNet  Google Scholar 

  12. K. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Springer, 1991.

  13. F. Hassine, Stability of elastic transmission systems with a local Kelvin-Voigt dam**, Euro. J. Control 23 (2015) 84-93.

    Article  MathSciNet  Google Scholar 

  14. F. Hassine, Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt dam**, Discrete Contin. Dyn. Syst. Ser. B 21 (6) (2016) 1757-1774.

    Article  MathSciNet  Google Scholar 

  15. F. Hassine, Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt dam**, Internat. J. Control 89 (10) (2016) 1933-1950.

    Article  MathSciNet  Google Scholar 

  16. F. Hassine, Logarithmic stabilization of the Euler-Bernoulli transmission plate equation with locally distributed Kelvin-Voigt dam**, J. Math. Anal. Appl. 455 (2017) 1765-1782.

    Article  MathSciNet  Google Scholar 

  17. H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und O peratordifferentialgleichugen, Academic-Verlag (1974) (Russian 1978).

  18. J. E. Lagnese, Boundary stabilization of thin plates, SIAM Philadelphia, 1989.

  19. G. Lebeau, L. Robbiano, Contrôle exacte de I’équation de la chaleur, Comm. Partial Differential Equations, 20 (1995) 335-356.

    Article  MathSciNet  Google Scholar 

  20. G. Lebeau, L. Robbiano, Stabilisation de I’équation des ondes par le bord, Duke Math. Journal, 86 (1997) 465-491.

    Article  MathSciNet  Google Scholar 

  21. Y.-F. Li, Z.-J. Han, G.-Q. Xu, Explicit decay rate for coupled string-beam system with localized frictional dam**, Applied Mathematics Letters, 78 (2018) 51-58.

    Article  MathSciNet  Google Scholar 

  22. K. Liu, Z. Liu, Exponential decay of the energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt dam**, SIAM J. Control Optim. 36 (3) (1998) 1086-1098.

    Article  MathSciNet  Google Scholar 

  23. K. Liu, Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity, Z. Angew. Math. Phys. 53 (2002) 265-280.

    Article  MathSciNet  Google Scholar 

  24. W. Liu, G. H. Williams, The exponential stability of the problem of transmission of the wave equation. Bull. Aust. Math. Soc. 97 (1998) 305-327.

    Article  MathSciNet  Google Scholar 

  25. K. S. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys. 56 (2005) 630-644.

    Article  MathSciNet  Google Scholar 

  26. K. S. Liu and B. Rao, Exponential stability for wave equations with local Kelvin-Voigt dam**, Z. Angew. Math. Phys. 57 (2006) 419-432.

    Article  MathSciNet  Google Scholar 

  27. A. J. A. Ramos, M. W. P. Souza, Equivalence between observability at the boundary and stabilization for transmission problem of the wave equation, Z. Angew. Math. Phys. (2017) 68:48.

    Article  MathSciNet  Google Scholar 

  28. J. Le Rousseau, G. Lebeau, Introduction aux inégalités de Carleman pour les opérateurs elliptiques et paraboliques, Applications au prolongement unique et au contrôle des équations paraboliques, 2009.

  29. J. Le Rousseau, L. Robbiano. Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations. Arch. Rational Mech. Anal., 195 (2010) 953-990.

    Article  MathSciNet  Google Scholar 

  30. L. Tébou, A constructive method for the stabilization of the wave equation with localized Kelvin?Voigt dam**, C. R. Acad. Sci. Paris Ser. I 350 (2012) 603-608.

    Article  MathSciNet  Google Scholar 

  31. L. Tébou, Stabilization of some elastodynamic system with localized Kelvin-Voigt dam**, Discrete Contin. Dyn. Syst. Ser. 36 (12) (2016) 7117-7136.

    Article  MathSciNet  Google Scholar 

  32. J. T. Wolka, B. Rowley, B. Lawruk, Boundary Value Problems for Elliptic System, Cambridge University Press, Cambridge, 1995.

    Book  Google Scholar 

  33. Q. Zhang, Exponential stability of an elastic string with local Kelvin-Voigt dam**, ZAMM Z. Angew. Math. Mech. 61 (2010) 1009-1015.

    Article  MathSciNet  Google Scholar 

  34. Q. Zhang, On the lack of exponential stability for an elastic-viscoelastic waves interaction system, Nonlinear Analysis: Real World Applications, 37 (2017) 387-411.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakho Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, G., Hong, H. Stabilization of transmission system of Kirchhoff plate and wave equations with a localized Kelvin–Voigt dam**. J. Evol. Equ. 21, 2239–2264 (2021). https://doi.org/10.1007/s00028-021-00682-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-021-00682-6

Keywords

Mathematics Subject Classification

Navigation