Log in

Interface crack behaviors disturbed by Love waves in a 1D hexagonal quasicrystal coating–substrate structure

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The scattering of Love waves by an interface crack between a one-dimensional (1D) hexagonal quasicrystal (QC) coating and a half-space elastic substrate is investigated by using the superposition principle and integral transform technique. Introducing the dislocation density function, the wave scattering problem is transformed into the Cauchy singular integral equations, and the dynamic stress intensity factors (SIFs) of the left and right crack tips are solved. By degrading the quasicrystalline coating to the elastic dielectric layer, the correctness of the present numerical results is verified compared to the classical one. Then, the effects of the material combinations, incidence direction, crack sizes, and coupling coefficient on the dynamic SIFs are analyzed. The results show that the appropriate material combinations and incidence direction can hinder crack expansion. Moreover, the smaller the absolute value of the coupling coefficient and the crack sizes, the smaller the peak and volatility of the dynamic SIFs. The conclusions of this paper provide a theoretical basis for the dynamic failure analysis and nondestructive tests of QCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vekilov, Y.K., Isaev, E.I.: Quasicrystals: structure and properties. Crystall. Rep. 52(6), 932–937 (2007)

    Article  Google Scholar 

  2. Lee, K., Chen, E., Naugle, D., et al.: Corrosive behavior of multi-phased quasicrystal alloys. J. Alloys Comp. 851, 156862 (2020)

    Article  Google Scholar 

  3. Sanchez, A., de Blas, F.J.G., Algaba, J.M., et al.: Application of quasicrystalline materials as thermal barriers in aeronautics and future perspectives of use for these materials. Mater. Res. Soc. Symp. Proc. 553, 447–458 (1999)

    Article  Google Scholar 

  4. Wang, Z.B., Ricoeur, A.: Numerical crack path prediction under mixed-mode loading in 1D quasicrystals. Theor. Appl. Fract. Mech. 90, 122–132 (2017)

    Article  Google Scholar 

  5. Mompiou, F., Caillard, D.: Dislocations and mechanical properties of icosahedral quasicrystals. Comptes Rendus Physique 15(1), 82–89 (2014)

    Article  Google Scholar 

  6. Yang, J., Li, X.: The anti-plane shear problem of two symmetric cracks originating from an elliptical hole in 1D hexagonal piezoelectric QCs. Adv. Mater. Res. 936, 127–135 (2014)

    Article  Google Scholar 

  7. Fan, C.Y., Li, Y., Xu, G.T., et al.: Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals. Mech. Res. Commun. 74, 39–44 (2016)

    Article  Google Scholar 

  8. Hu, K.Q., **, H., Yang, Z.J., et al.: Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect. Acta Mech. 230, 2455–2474 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhai, T., Ma, Y.Y., Ding, S.H., et al.: Circular inclusion problem of two-dimensional decagonal quasicrystals with interfacial rigid lines under concentrated force. Zeitschrift fur Angewandte Mathematik und Mechanik 101(12), e202100081 (2021)

    Article  MathSciNet  Google Scholar 

  10. Bak, P.: Symmetry, stability, and elastic properties of icosahedral incommensurate crystals. Phys. Rev. B Condens. Matter 32(9), 5764–5772 (1985)

    Article  MathSciNet  Google Scholar 

  11. Lubensky, T.C., Ramaswamy, S., Toner, J.: Hydrodynamics of icosahedral quasicrystals. Phys. Rev. B Condens. Matter 32(11), 7444–7452 (1985)

    Article  Google Scholar 

  12. Li, C.L., Liu, Y.Y.: Low-temperature lattice excitation of icosahedral Al-Mn-Pd quasicrystals. Phys. Rev. B 63(6), 064203 (2001)

    Article  Google Scholar 

  13. Akmaz, H.K., Akinci, U.: On dynamic plane elasticity problems of 2D quasicrystals. Phys. Lett. A 373(22), 1901–1905 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tupholme, G.E.: Row of shear cracks moving in one-dimensional hexagonal quasicrystalline materials. Eng. Fract. Mech. 134, 451–458 (2015)

    Article  Google Scholar 

  15. Gao, Y.Y., Liu, G.T.: Analytic solutions of a fast propagating crack from triangular hole in 1D hexagonal piezoelectric quasicrystals. Math. Practice Theory 49(11), 206–213 (2019). ((in Chinese))

    Google Scholar 

  16. Langenberg, K.J., Marklein, R.: Transient elastic waves applied to nondestructive testing of transversely isotropic lossless materials: a coordinate-free approach. Wave Motion 41(3), 247–261 (2005)

    Article  MATH  Google Scholar 

  17. Yang, J., Li, X.: The scattering of the SH wave on a limited permeable crack in a functionally graded piezoelectric substrate bonded to a homogeneous piezoelectric strip. Acta Mech. 226(10), 3205–3219 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Potapov, A.I., Kondrat’ev, A.V., Smorodinskii, Y.G.: Nondestructive testing of structurally inhomogeneous composite materials by the method of elastic-wave velocity hodograph. Russian J. Nondestruct. Test. 55(6), 434–442 (2019)

    Article  Google Scholar 

  19. Zhang, B., Yu, J.G., Zhang, X.M., et al.: Guided waves in the multilayered one-dimensional hexagonal quasi-crystal plates. Acta Mech. Solida Sin. 34(1), 91–103 (2020)

    Article  Google Scholar 

  20. Zhang, B., Yu, J.G., Zhou, H.M., et al.: Guided waves in a functionally graded 1-D hexagonal quasi-crystal plate with piezoelectric effect. J. Intell. Mater. Syst. Struct. 33(13), 1678–1696 (2022)

    Article  Google Scholar 

  21. Feng, X., Zhang, L.L., Hu, Z.M., et al.: Guided wave propagation in multilayered two-dimensional quasicrystal plates with imperfect interfaces. Acta Mech. Solida Sin. 35(4), 694–704 (2022)

    Article  Google Scholar 

  22. Wang, X.X., Yu, J.G., Zhang, B., et al.: Lamb waves propagating in functionally graded 1-D quasi-crystal couple stress nanoplates. Acta Mech. 233(8), 3021–3033 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, X., Zhang, J.M., Zhang, L.L, et al.: Lamb wave propagate in two-dimensional piezoelectric quasicrystal multilayered plates with nonlocal effect (2021). https://doi.org/10.1109/SPAWDA51471.2021.9445452

  24. Yang, J., Wang, X., Ding, S.H., et al.: Scattering of SH wave by a crack in a functionally graded one-dimensional hexagonal piezoelectric quasicrystals. ZAMM - Zeitschrift fur Angewandte Mathematik und Mechanik (2022). https://doi.org/10.1002/zamm.202200071

  25. Toshinawa, T., Ohmachi, T.: Love-wave propagation in a three-dimensional sedimentary basin. Bull. Seismol. Soc. Am. 82(4), 1661–1677 (1992)

    Article  Google Scholar 

  26. Du, J., Harding, G.L., Collings, A.F., et al.: An experimental study of Love wave acoustic sensors operating in liquids. Sens. Actuators A Phys. 60, 54–61 (1997)

    Article  Google Scholar 

  27. Liu, H., Wang, Z.K., Wang, T.J.: Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int. J. Solids Struct. 38(1), 37–51 (2001)

    Article  MATH  Google Scholar 

  28. Gu, B., Yu, S.W., Feng, X.Q., et al.: Scattering of love waves by an interface crack between a piezoelectric layer and an elastic substrate. Acta Mech. Solida Sin. 15(2), 111–118 (2002)

    MathSciNet  Google Scholar 

  29. Li, X.Y., Wang, Z.K., Huang, S.H.: Love waves in functionally graded piezoelectric materials. Int. J. Solids Struct. 41(26), 7309–7328 (2004)

    Article  MATH  Google Scholar 

  30. Guo, X.P., Chen, J.F., Yu, H.L., et al.: A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal. Surface Coat. Technol. 268, 94–98 (2015)

    Article  Google Scholar 

  31. Tian, Y., Huang, H., Yuan, G.Y., et al.: Microstructure evolution and mechanical properties of quasicrystal-reinforced Mg-Zn-Gd alloy processed by cyclic extrusion and compression. J. Alloys Comp. 626, 42–48 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (12262033, 12062021 and 12062022), Ningxia Hui Autonomous Region Science and Technology Innovation Leading Talent Training Project (KJT2020001), and the Natural Science Foundation of Ningxia (2022AAC03013; 2022AAC03068). Yueting Zhou would like to acknowledge the supports by the National Natural Foundation of China (11972257 and 12272269).

Author information

Authors and Affiliations

Authors

Contributions

YM, YZ, and XZ wrote the main manuscript text, and JY and SD prepared Figs. 1, 2, 3, 4, 5, 6, 7. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Xuefen Zhao or Shenghu Ding.

Ethics declarations

Conflict of interest

On behalf all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhou, Y., Yang, J. et al. Interface crack behaviors disturbed by Love waves in a 1D hexagonal quasicrystal coating–substrate structure. Z. Angew. Math. Phys. 74, 61 (2023). https://doi.org/10.1007/s00033-023-01947-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01947-5

Keywords

Mathematics Subject Classification

Navigation