Log in

Interface crack between dissimilar thin-films with surface effect

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

An interface crack between dissimilar elastic thin-films with surface effect has been investigated. By using integral transform technique the mixed boundary value problem of an interface crack is reduced to singular integral equations, which can be further reduced to a Riemann–Hilbert problem with analytical solution. The crack-tip singularities of the interface crack have been studied for possible combination of the dissimilar isotropic elastic materials with surface effect, and it is shown that there can be either oscillatory or non-oscillatory singularity for the interface crack. Analytical solution of the normal and shear stresses on the bonded interface is obtained, the relative crack opening displacement (COD) and relative crack sliding displacement (CSD) were given, and energy release rates (ERRs) for the interface crack are obtained for both oscillatory and non-oscillatory singularity cases. The oscillatory and non-oscillatory singularity parameters for interface cracks between dissimilar isotropic elastic materials with surface effect have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hutchinson, J.W., Suo, Z.: In Advances in Applied Mechanics (eds J.W. Hutchinson and T.Y. Wu), 29, 63-191. Academic Press, New York. (1991)

  2. Williams, M.L.: The stresses around a fault or crack in dissimilar media. B. Seismolo. Soc. Am. 49, 199–204 (1959)

    Article  MathSciNet  Google Scholar 

  3. England, A.H.: A crack between dissimilar media. J. Appl. Mech. 30, 400–402 (1965)

    Article  Google Scholar 

  4. Enrique, G., Vladislav, M., Federico, P.: On the estimation of the first interpenetration point in the open model of interface cracks. Int. J. Fract. 143, 287–290 (2007)

    Article  Google Scholar 

  5. Zhao, J.-M., Wang, H.-L., Liu, B.: Two objective and independent fracture parameters for interface cracks. J. Appl. Mech. 84, 041006-1–9 (2017)

    Google Scholar 

  6. Hills, D.A., Barber, J.R.: Interface cracks. Int. J. Mech. Sci. 35, 27–37 (1993)

    Article  Google Scholar 

  7. Comninou, M.: The interface crack. J. Appl. Mech. 44, 631–636 (1977)

    Article  Google Scholar 

  8. Clements, D.L.: A crack between dissimilar anisotropic media. Int. J. Eng. Sci. 9, 257–265 (1971)

    Article  Google Scholar 

  9. Suo, Z.: Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. Roy. Soc. Lond. A 447, 331–358 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Erdogan, F., Wu, B.H.: Interface crack problems in layered orthotropic materials. J. Mech. Phys. Solids 41, 889–917 (1993)

    Article  MathSciNet  Google Scholar 

  11. Ru, C.Q.: A hybrid complex-variable solution for piezoelectric/isotropic elastic interfacial cracks. Int. J. Fract. 152, 169–178 (2008)

    Article  Google Scholar 

  12. Gao, C.-F., Mai, Y.-W.: Singularities of an interface crack in electrostrictive materials. Int. J. Solids Struct. 48, 1395–1401 (2011)

    Article  Google Scholar 

  13. Kuo, C.M., Barnett, D.M.: Stress singularities of interfacial cracks in bonded piezoelectric half-spaces. In: Wu, J.J., Ting, T.C.T., Barnett, D.M. (eds.) Modern Theory of Anisotropic Elasticity and Applications, pp. 33-50. SIAM Proceedings Series, Philadelphia (1991)

  14. Suo, Z., Kuo, C.M., Narnett, D.M., Willis, J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)

    Article  MathSciNet  Google Scholar 

  15. Eda, G., Fanchini, G., Chhowalla, M.: Large-area ultrathin films of reduced grapheme oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008)

    Article  Google Scholar 

  16. He, L.H., Lim, C.W., Wu, B.S.: A continuum model for size-dependent deformation of elastic films of nano-scale thickness. Int. J. Solids Struct. 41, 847–857 (2004)

    Article  Google Scholar 

  17. Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49, 1294–1301 (2011)

    Article  MathSciNet  Google Scholar 

  18. Zhang, T., Li, X., Gao, H.: Fracture of grapheme: A review. Int. J. Fract. 196, 1–31 (2015)

    Article  Google Scholar 

  19. Wang, G.F., Feng, X.Q., Wang, T.J., Gao, W.: Surface effects on the near-tip stresses for mode-I and mode-III cracks. J. Appl. Mech. 75, 148–155 (2008)

    Google Scholar 

  20. Walton, J.R.: A note on fracture models incorporating surface elasticity. J. Elasticity 109, 95–102 (2012)

    Article  MathSciNet  Google Scholar 

  21. Kim, C., Ru, C.Q., Schiavone, P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18, 59–66 (2013)

    Article  MathSciNet  Google Scholar 

  22. Wang, X., Fan, H.: Interaction between a nanocrack with surface elasticity and a screw dislocation. Math. Mech. Solids 22, 131–143 (2017)

    Article  MathSciNet  Google Scholar 

  23. Gorbushin, N., Eremeyev, V.A., Mishuris, G.: On Stress singularity near the tip of a crack with surface stresses. Int. J. Eng. Sci. 146, 103183 (2020)

    Article  MathSciNet  Google Scholar 

  24. Nan, H., Wang, B.: Effect of residual surface stress on the fracture of nanoscale materials. Mech. Res. Commun. 44, 30–34 (2012)

    Article  Google Scholar 

  25. Wang, X., Schiavone, P.: A mode-III crack with variable surface effects. J. Theo. Appl. Mech. 54, 1319–1327 (2016)

    Article  Google Scholar 

  26. Li, X.-F.: Effect of surface elasticity on stress intensity factors near mode-III crack tips. J. Mech. Mater. Struct. 14, 43–60 (2019)

    Article  MathSciNet  Google Scholar 

  27. Hu, Z.-L., Lee, K.Y., Li, X.-F.: Crack in an elastic thin-film with surface effect. Int. J. Eng. Sci. 123, 158–173 (2018)

    Article  MathSciNet  Google Scholar 

  28. Piccolroaz, A., Gorbushin, N., Mishuris, G., Nieves, M.J.: Dynamic phenomena and crack propagation in dissimilar elastic lattices. Int. J. Eng. Sci. 149, 103208 (2020)

    Article  MathSciNet  Google Scholar 

  29. Lurie, A.I., Belyaev, A.: Theory of Elasticity. Springer, Bergin, Heidelberg (2005)

    Book  Google Scholar 

  30. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  31. Li, X.-F., Tang, G.-J., Shen, Z.-B., Lee, K.-Y.: Interface crack embedded in a bi-material plane under shear and compression. Mech. Mater. 85, 80–93 (2015)

    Article  Google Scholar 

  32. Parton, V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671–683 (1976)

    Article  Google Scholar 

  33. Liu, M., Hsia, K.J.: Interfacial cracks between piezoelectric and elastic materials under in-plane electric loading. J. Mech. Phys. Solids 51, 921–944 (2003)

    Article  Google Scholar 

  34. Hu, K.Q., Chen, Z.T., Zhong, Z.: Interface crack between magnetoelectroelastic and orthotropic half-spaces under in-plane loading. Theo. Appl. Fract. Mech. 96, 285–295 (2018)

    Article  Google Scholar 

  35. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1963)

    MATH  Google Scholar 

  36. Dundurs, J.W.: Edge-bonded dissimilar orthotropic elastic wedges under normal and shear loading. J. Appl. Mech. 36, 650–652 (1969)

    Article  Google Scholar 

  37. Rice, J.R.: Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 55, 98–103 (1988)

    Article  Google Scholar 

  38. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Article  Google Scholar 

  39. Choi, J., Cho, M., Kim, W.: Multiscale analysis of nanoscale thin film considering surface effects: Thermomechancial properties. J. Mech. Mater. Struct. 5, 161–183 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11872203) and for Creative Research Groups (51921003). The first author wishes to thank a start-up grant (YAH20074) from the Nan**g University of Aeronautics and Astronautics. Constructive comments from the reviewer are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cun-Fa Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

We consider dissimilar thin films of thickness h with an interface crack, see Fig.1, plane deformation is focused, and the displacement component along the thickness direction is neglected. The surface displacement components are taken as the bulk displacements at the same locations at the surface of the material.

If the body forces are neglected and the static problem is considered, the application of the principle of virtual work according to the bulk and surface stresses leads to

$$\begin{aligned} \int _S {\left( {\frac{h}{2}\sigma _{\alpha \beta } +\sigma _{\alpha \beta }^{S} +\sigma _{0} \delta _{\alpha \beta } } \right) \delta \varepsilon _{\alpha \beta } } dS-\frac{h}{2}\int _{\partial S} {f_{\alpha } \delta u_{\alpha } } d(\partial S)-\int _{\partial S} {\sigma _{0} n_{\alpha } \delta u_{\alpha } } d(\partial S)=0 \end{aligned}$$
(A.1)

where \(\delta \) denotes the variation of a function, S is the area of the elastic plate and \(\partial S\) is the boundary of S, \(n_{\alpha } \) (\(\alpha =1,2)\) is the unit outer normal vector to the boundary \(\partial S\), and \(f_{\alpha } \) are the density of surface forces independent of the thickness. It is noted that the second term and the third term on the left-hand side of Eq. (A.1) demonstrate the contribution of the surface forces and surface residual stress along the boundary \(\partial S\), respectively.

Considering the following definition of strain with geometric nonlinearity terms

$$\begin{aligned} \varepsilon _{\alpha \beta } =\frac{1}{2}(u_{\alpha ,\beta } +u_{\beta ,\alpha } +u_{\gamma ,\alpha } u_{\gamma ,\beta } ) \end{aligned}$$
(A.2)

The substitution of Eq. (A.2) into Eq. (A.1) leads to

$$\begin{aligned} \int _S {\left[ {\left( {\frac{h}{2}\sigma _{\alpha \beta } +\sigma _{\alpha \beta }^{S} } \right) \delta \varepsilon _{\alpha \beta } +\sigma _{0} \delta _{\alpha \beta } u_{\gamma ,\beta } \delta u_{\gamma ,\alpha } } \right] } dS-\int _{\partial S} {\left[ {\frac{h}{2}f_{\alpha } +\sigma _{0} n_{\alpha } } \right] \delta u_{\alpha } } d(\partial S)=0 \end{aligned}$$
(A.3)

Applying the Green theorem to the first term of Eq. (A.3) leads to

$$\begin{aligned}&\int _S {\left[ {\left( {\frac{h}{2}\sigma _{\alpha \beta } +\sigma _{\alpha \beta }^{S} } \right) \delta \varepsilon _{\alpha \beta } +\sigma _{0} \delta _{\alpha \beta } u_{\gamma ,\beta } \delta u_{\gamma ,\alpha } } \right] } dS=\int _{\partial S} {\left( {\frac{h}{2}\sigma _{\alpha \beta } +\sigma _{\alpha \beta }^{S} +\sigma _{0} \delta _{\alpha \gamma } u_{\beta ,\gamma } } \right) n_{\alpha } \delta u_{\beta } } d(\partial S) \nonumber \\&\quad -\int _S {\left( {\frac{h}{2}\sigma _{\alpha \beta ,\alpha } +\sigma _{\alpha \beta ,\alpha }^{S} +\sigma _{0} \delta _{\alpha \gamma } u_{\beta ,\gamma \alpha } } \right) \delta u_{\beta } } dS \end{aligned}$$
(A.4)

and Eq. (A.3) can be rewritten as

$$\begin{aligned}&\int _{\partial S} {\left[ {\left( {\frac{h}{2}\sigma _{\alpha \beta } +\sigma _{\alpha \beta }^{S} +\sigma _{0} \delta _{\alpha \gamma } u_{\beta ,\gamma } } \right) n_{\alpha } -\frac{h}{2}f_{\beta } -\sigma _{0} n_{\beta } } \right] \delta u_{\beta } } d(\partial S) \nonumber \\&\quad -\int _S {\left( {\frac{h}{2}\sigma _{\alpha \beta ,\alpha } +\sigma _{\alpha \beta ,\alpha }^{S} +\sigma _{0} \delta _{\alpha \gamma } u_{\beta ,\gamma \alpha } } \right) \delta u_{\beta } } dS=0 \end{aligned}$$
(A.5)

By using the variational principle, the governing equation of elastic thin-films with surface elasticity effect can be obtained as

$$\begin{aligned} h\sigma _{\alpha \beta ,\alpha } +2\sigma _{\alpha \beta ,\alpha }^{S} +2\sigma _{0} \delta _{\alpha \gamma } u_{\beta ,\gamma \alpha } =0 \end{aligned}$$
(A.6)

which is subjected to the following boundary condition

$$\begin{aligned} \left( {h\sigma _{\alpha \beta } +2\sigma _{\alpha \beta }^{S} +2\sigma _{0} \delta _{\alpha \gamma } u_{\beta ,\gamma } } \right) n_{\alpha } =hf_{\beta } +2\sigma _{0} n_{\beta } \end{aligned}$$
(A.7)

When the definition of the total incremental stress is introduced as in Eq. (5), the expansion of the governing equation (A.6) leads to Eqs. (3) and (4), and the boundary condition (A.7) leads to Eqs. (6) and (7).

The following identities for the integral of generalized functions have been used in the derivation of the singular integral equations (40)

$$\begin{aligned} \int _0^\infty {\cos (\xi x)\cos (\xi t)d\xi }= & {} \frac{\pi }{2}\delta (x-t) \nonumber \\ \int _0^\infty {\sin (\xi x)\sin (\xi t)d\xi }= & {} \frac{\pi }{2}\delta (x-t) \nonumber \\ \int _0^\infty {\frac{\sin (\xi x)\sin (\xi t)}{\xi }d\xi }= & {} \frac{1}{2}\log \left| {\frac{x+t}{x-t}} \right| \nonumber \\ \int _0^\infty {\cos (\xi x)\sin (\xi t)d\xi }= & {} \frac{t}{t^{2}-x^{2}} \end{aligned}$$
(A.8)

where \(\delta ( )\) is the Dirac delta function.

In the derivation of the energy release rate (ERR) of the interface crack, the following integral identities have been used

$$\begin{aligned} \int _0^a {\sqrt{a^{2}-x^{2}} \cos \left( {\varepsilon \log \left| {\frac{a+x}{a-x}} \right| } \right) dx}= & {} \frac{\pi a^{2}\left( {1+4\varepsilon ^{2}} \right) }{4\cosh (\varepsilon \pi )} \end{aligned}$$
(A.9)
$$\begin{aligned} \int _0^a {\sqrt{a^{2}-x^{2}} \left[ {\left( {\frac{a+x}{a-x}} \right) ^{k}+\left( {\frac{a-x}{a+x}} \right) ^{k}} \right] dx}= & {} \frac{\pi a^{2}\left( {1-4k^{2}} \right) }{2\cosh (k\pi )} \end{aligned}$$
(A.10)

It is noted that Eqs. (A.9) and (A.10) are mathematically the same considering the integral identity that is shown in Eq. (93).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Fu, J., Chen, Z. et al. Interface crack between dissimilar thin-films with surface effect. Z. Angew. Math. Phys. 73, 104 (2022). https://doi.org/10.1007/s00033-022-01710-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01710-2

Keywords

Mathematics Subject Classification

Navigation