Log in

Multiple rigid line inclusions (anti-cracks) in a multilayered orthotropic medium under anti-plane loading

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A non-homogeneous medium with multiple line inclusions is studied. The stiffness of the inclusions considered in this study is infinite. The model established can handle any non-homogeneity (continuous varying material properties or layered structures) and orthotropic in mechanical properties. The problem of rigid line inclusions in homogeneous medium can be considered as a special case of the model. Dependence of the inclusion tip fields on the strain intensity factor is given in closed form. Existence of multiple (parallel) inclusions can significantly reduce the strain intensity at the inclusion tips. However, the collinear inclusions will increase the strain intensity at the inclusion tips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koiter, W.T.: On the diffusion of load from a stiffener into a sheet. Q. J. Mech. Appl. Math. 8, 164–178 (1955)

    Article  MathSciNet  Google Scholar 

  2. Ballarini, R.: A rigid line inclusion at a bimaterial interface. Eng. Fract. Mech. 37, 1–5 (1990)

    Article  Google Scholar 

  3. Kerr, G., Melrose, G., Tweed, J.: Antiplane shear of a strip containing a periodic array of rigid line inclusions. Math. Mech. Solids 3, 505–512 (1997)

    Article  MathSciNet  Google Scholar 

  4. Tang, R.J., Tao, F.M., Zhang, M.H.: Interaction between a rigid line inclusion and an elastic circular inclusion. Appl. Math. Mech. English Ed. 18, 441–448 (1998)

    MATH  Google Scholar 

  5. Jobin, T.M., Ramji, M., Khaderi, S.N.: Numerical evaluation of the interaction of rigid line inclusions using strain intensity factors. Int. J. Mech. Sci. 153, 10–20 (2019)

    Article  Google Scholar 

  6. Bigoni, D., Dal Corso, F., Gei, M.: The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part II Implications on shear band nucleation, growth and energy release rate. J. Mech. Phys. Solids 56, 839–857 (2008)

    Article  MathSciNet  Google Scholar 

  7. Corso, F. Dal., Bigoni, D.: The interactions between shear bands and rigid lamellar inclusions in a ductile metal matrix. Proc. R. Soc. A 465, 143–163 (2009)

    Article  MathSciNet  Google Scholar 

  8. Dal Corso, F., Bigoni, D., Gei, M.: The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I Full-field solution and asymptotics. J. Mech. Phys. Solids 56, 815–838 (2018)

    Article  Google Scholar 

  9. Hu, Z.L., Li, X.F.: A rigid line inclusion in an elastic film with surface elasticity. Z. Angew. Math. Phys. 69, 92 (2018)

    Article  MathSciNet  Google Scholar 

  10. Hu, Z.L., Yang, Y., Li, X.F.: Singular elastic field induced by a rigid line inclusion in a thin nanoplate with surface elasticity. Int. J. Mech. Sci. 198, 106386 (2021)

    Article  Google Scholar 

  11. Liu, Y.W., Fang, Q.H.: Plane elastic problem on rigid lines along circular inclusion. Appl. Math. Mech. English Ed. 26, 1585–1594 (2005)

    Article  Google Scholar 

  12. Jiang, C.P., Cheung, Y.K.: Antiplane problem of collinear rigid line inclusions in dissimilar media. Eng. Fract. Mech. 52, 907–916 (1995)

    Article  Google Scholar 

  13. Kaczynski, A., Matysiak, S.J.: Stress singularities in a periodically layered composite with a transverse rigid line inclusion. Arch. Appl. Mech. 80, 271–283 (2010)

    Article  Google Scholar 

  14. Liu, Y.W.: Antiplane problems of periodical rigid line inclusions between dissimilar anisotropic materials. Appl. Math. Mech. English Ed. 22, 1149–1154 (2001)

    Article  Google Scholar 

  15. Lee, K.Y., Kwak, S.G.: Determination of stress intensity factors for bimaterial interface stationary rigid line inclusions by boundary element method. Int. J. Fract. 113, 285–294 (2002)

    Article  Google Scholar 

  16. Prasad, P.B.N., Hasebe, N., Wang, X.F., Shirai, Y.: Green’s functions for a bi-material problem with interfacial elliptical rigid inclusion and applications to crack and thin rigid line problems. Int. J. Solids Struct. 42, 1513–1535 (2005)

  17. Gorbatikh, L., Lomov, S.V., Verpoest, I.: Relation between elastic properties and stress intensity factors for composites with rigid-line reinforcements. Int. J. Fract. 161, 205–212 (2010)

    Article  Google Scholar 

  18. Wang, B.L., Han, J.C., Du, S.Y.: Cracks problem for non-homogeneous composite material subjected to dynamic loading. Int. J. Solids Struct. 37, 1251–1274 (2000)

    Article  Google Scholar 

  19. Wang, B.L., Han, J.C., Du, S.Y.: Electroelastic fracture dynamics for multilayered piezoelectric materials under dynamic anti-plane shearing. Int. J. Solids Struct. 37, 5219–5231 (2000)

    Article  Google Scholar 

  20. Wang, B.L., Hu, J.S.: Crack growth behavior and thermal shock resistance of ceramic sandwich structures with an auxetic honeycomb core. Compos. Struct. 260, 113256 (2021)

    Article  Google Scholar 

  21. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1965)

    Google Scholar 

  22. Wang, B.L., Han, J.C., Du, S.Y.: Electromechanical behaviour of a finite piezoelectric layer under a flat punch. Int. J. Solids Struct. 45, 6384–6398 (2008)

    Article  Google Scholar 

  23. Nan, H.S., Wang, B.L.: Effect of interface stress on the fracture behavior of a nanoscale linear inclusion along the interface of bimaterials. Int. J. Solids Struct. 51, 4094–4100 (2014)

    Article  Google Scholar 

  24. Erdogan, F., Wu, B.H.: Crack problem in FGM layers under thermal stresses. J. Thermal Stresses 19, 237–265 (1996)

    Article  Google Scholar 

  25. Wang, B.L., Li, J.E.: Fracture behavior and thermal shock resistance analysis of thermoelectric material plates and shells under thermal and electric shocks. Eng. Fract. Mech. 225, 106130 (2000). https://doi.org/10.1016/j.engfracmech.2018.08.024

    Article  Google Scholar 

  26. Wang, P., Wang, B.L., Wang, K.F., Cui, Y.J.: Analysis of inclusion in thermoelectric materials: the thermal stress field and the effect of inclusion on thermoelectric properties. Compos. B 166, 130–138 (2019)

    Article  Google Scholar 

  27. Wang, P., Wang, B.L., Wang, K.F., Hirakata, H., Zhang, C.: Analysis of three-dimensional ellipsoidal inclusions in thermoelectric solids. Int. J. Eng. Sci. 142, 158–169 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Baolin Wang of Harbin Institute of Technology for many constructive comments on this research.

Funding

This research was sponsored by Qing Lan Project of Jiangsu Province of China and funded by the National Natural Science Foundation of China (Project No. 11502101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Closed-form solution for a rigid line in an orthotropic material

The closed-form solutions for the rigid line inclusions in orthotropic media will be given. This can be done by solving the problem of an rigid line inclusion in an infinite orthotropic medium. The solution can be done by repeating the analysis of Section 2. Since the field quantities at infinity must be finite and the inclusion is at the middle of the medium, the displacements can be expressed as

$$\begin{aligned} w(x,y)=\gamma _{0} x+\frac{2}{\pi }\int \limits _0^\infty {e^{-s\lambda y}A(s)\sin (sx)\hbox {d}s} \end{aligned}$$
(A1)

where \(\gamma _{0}\) is the share strain applied to the medium at infinity, A(s) is unknown and will be determined from the inclusion condition of the problem. In this Appendix, the notation \(\lambda =\sqrt{G_{x} /G_{y} }\) is used.

The share stresses corresponding to Eq. (A1) are

$$\begin{aligned} \tau _{x}= & {} \tau _{0} +\frac{2G_{x} }{\pi }\int \limits _0^\infty {se^{-s\lambda y}A(s)\hbox {cos(}sx)\hbox {d}s} \end{aligned}$$
(A2)
$$\begin{aligned} \tau _{y}= & {} -\frac{2\lambda G_{y} }{\pi }\int \limits _0^\infty {se^{-s\lambda y}A(s)\sin \hbox {(}sx)\hbox {d}s} \end{aligned}$$
(A3)

in which \(G_{x}\) and \(G_{y}\) are the values of the shear modulus and \(\tau _{0} =G_{x} \gamma _{0}\).

The jump of the shear stress \(\tau _{y}\) across the inclusion plane g(x) is

$$\begin{aligned} g(x)=-\frac{2}{\pi G_{0} }\int \limits _0^\infty {sA(s)\sin \hbox {(}sx)\hbox {d}s} . \end{aligned}$$
(A4)

where \(G_{0} =-\frac{1}{2\lambda G_{y} }\) is a constant depending on the elasticity properties of the material.

The inversion of Eq. (A4) gives

$$\begin{aligned} A(s)=G_{0} \int \limits _0^a {\frac{g(r)}{s}\sin (sr)\hbox {d}r} . \end{aligned}$$
(A5)

With the substitution of Eq. (A5), the share strain \(\gamma _{x}\) at the inclusion plane can be obtained from Eq. (A1). This yields

$$\begin{aligned} \gamma _{x} =\gamma _{0} +\frac{2}{\pi }G_{0} \int \limits _0^\infty {\int \limits _0^a {g(r)\sin (sr)\cos (sx)\hbox {d}r} \hbox {d}s} \end{aligned}$$
(A6)

Since the strain \(\gamma _{x}\) inside the inclusion is zero, Eq. (A6) will result in a singular integral equation. The solution is

$$\begin{aligned} g(r)=-\frac{\gamma _{0} }{G_{0} }\frac{r}{\sqrt{a^{2}-r^{2}} } \end{aligned}$$
(A7)

Note that Eq. (A6) is valid inside the inclusion as well as outside of the inclusion. In the case of outside of the inclusion, the strain in the inclusion line can be obtained with the substitution of Eq. (A7) and using Eq. (17). This yields

$$\begin{aligned} \gamma _{x} (x)=\gamma _{0} \frac{\left| x \right| }{\sqrt{x^{2}-a^{2}} },\quad \left| x \right| >a . \end{aligned}$$
(A8)

As expected, the strain is equal to \(\varepsilon _{0}\) at infinity. However, when x approaches the inclusion tip a, the strain is singular. The strain intensity factor \(K_{{0}}\) can be defined as

$$\begin{aligned} K_{{0}} =\lim \limits _{x\rightarrow a+0} \sqrt{2\pi (x-a)} \gamma (x). \end{aligned}$$
(A9)

With the substitution of Eq. (A8), Eq. (A9) gives

$$\begin{aligned} K_{{0}} =\gamma _{0} \sqrt{\pi a} . \end{aligned}$$
(A10)

Thus, the strain intensity factor for an infinite medium does not depend on the material properties.

The full field can be obtained with the substitution ofg into Eq. (A5):

$$\begin{aligned} A(s)=-\frac{\gamma _{0} }{s}\int \limits _0^a {\frac{r}{\sqrt{a^{2}-r^{2}} }\sin (sr)\hbox {d}r} . \end{aligned}$$
(A11)

Based on the well-known integral (B3) of Appendix B, A is obtained as

$$\begin{aligned} A(s)=-\frac{\pi a}{2s}\gamma _{0} J_{1} (sa) \end{aligned}$$
(A12)

The stresses can be obtained from Eqs. (A2) and (A3) with the substitution of Eq. (A12) and using the well-known integrals

$$\begin{aligned}&\int \limits _0^\infty {\hbox {exp}(-s\lambda y)J_{1} (as)\cos (xs)\hbox {d}s} =\frac{1}{a}-\frac{x}{a}\frac{1-\left( {\frac{a^{2}-L^{2}}{L_{1} L_{2} }} \right) }{\sqrt{x^{2}-L^{2}} }, \end{aligned}$$
(A13)
$$\begin{aligned}&\int \limits _0^\infty {\hbox {exp}(-s\lambda y)J_{1} (as)\sin (xs)\hbox {d}s} =\frac{\lambda y}{a}\frac{1}{\sqrt{x^{2}-L^{2}} }\frac{L^{2}}{L_{1} L_{2} }, \end{aligned}$$
(A14)

where

$$\begin{aligned} L_{1}= & {} \sqrt{(a+x)^{2}+(\lambda y)^{2}} \end{aligned}$$
(A15)
$$\begin{aligned} L_{2}= & {} \sqrt{(a-x)^{2}+(\lambda y)^{2}} \end{aligned}$$
(A16)
$$\begin{aligned} L= & {} \frac{L_{1} -L_{2} }{2} \end{aligned}$$
(A17)

The results are

$$\begin{aligned} \tau _{x}= & {} \tau _{0} -G_{x} \gamma _{0} \left( {1-x\frac{1-\left( {\frac{a^{2}-L^{2}}{L_{1} L_{2} }} \right) }{\sqrt{x^{2}-L^{2}} }} \right) \end{aligned}$$
(A18)
$$\begin{aligned} \tau _{y}= & {} G_{y} \gamma _{0} \frac{\lambda y}{\sqrt{x^{2}-L^{2}} }\frac{L^{2}}{L_{1} L_{2} } \end{aligned}$$
(A19)

They can be expressed in terms of the strain intensity factor \(K_{{0}}\) as

$$\begin{aligned} \tau _{x}= & {} \tau _{0} -\frac{G_{x} K_{0} }{\sqrt{\pi a} }\left( {1-x\frac{1-\left( {\frac{a^{2}-L^{2}}{L_{1} L_{2} }} \right) }{\sqrt{x^{2}-L^{2}} }} \right) \end{aligned}$$
(A20)
$$\begin{aligned} \tau _{y}= & {} \frac{G_{y} K_{0} }{\sqrt{\pi a} }\frac{\lambda y}{\sqrt{x^{2}-L^{2}} }\frac{L^{2}}{L_{1} L_{2} } \end{aligned}$$
(A21)

Equations (A18)–(A21) are the closed-form solution of the stress field for a rigid line inclusion in an orthotropic medium under remote applied strain load. If the applied is the remote stress load \(\tau _{x} =\tau _{0}\), the equivalent applied strain will be \(\gamma _{0} =\tau _{0} /G_{x}\).

The above results of Eqs. (A20) and (A21) are for the stress distribution. In the special case of isotropic materials, they are same as the closed-form solution at the inclusion tips in [12]. Note that the current model is more general than Ref. [12] as it can deal with orthotropic materials.

Overall, the stresses have maximum values on the inclusion plane, \(y =\) 0. These are

$$\begin{aligned} \tau _{x}= & {} 0,\quad x<a \end{aligned}$$
(A22)
$$\begin{aligned} \tau _{y}= & {} \frac{G_{y} \gamma _{0} x}{\sqrt{a^{2}-x^{2}} }=\frac{G_{y} K_{0} x}{\sqrt{\pi a} \sqrt{a^{2}-x^{2}} },\quad x<a \end{aligned}$$
(A23)
$$\begin{aligned} \tau _{x}= & {} \frac{G_{x} \gamma _{0} x}{\sqrt{x^{2}-a^{2}} }=\frac{G_{x} K_{0} x}{\sqrt{\pi a} \sqrt{x^{2}-a^{2}} },\quad x>a \end{aligned}$$
(A24)
$$\begin{aligned} \tau _{y}= & {} 0,\quad x>a \end{aligned}$$
(A25)

Therefore, the shear stress \(\tau _{x}\) vanishes inside the inclusion region but singular immediately outside of the inclusion tip. In contrast, the shear stress \(\tau _{y}\) is singular immediately inside of the inclusion tip but zero outside of the inclusion region.

The stress intensity factors are defined according to

$$\begin{aligned} \left\{ {{\begin{array}{*{20}c} {K_{x} } \\ {K_{y} } \\ \end{array} }} \right\} =\left\{ {{\begin{array}{*{20}c} {\lim \limits _{x\rightarrow a+0} \sqrt{2\pi (x-a)} \tau _{x} (x)} \\ {\lim \limits _{x\rightarrow a-0} \sqrt{2\pi (a-x)} \tau _{y} (x)} \\ \end{array} }} \right\} . \end{aligned}$$
(A26)

and are obtained from Eqs. (A23) and (A22) as

$$\begin{aligned} \left\{ {{\begin{array}{*{20}c} {K_{x} } \\ {K_{y} } \\ \end{array} }} \right\} =\left\{ {{\begin{array}{*{20}c} {G_{x} K_{0} } \\ {G_{y} K_{0} } \\ \end{array} }} \right\} =\left\{ {{\begin{array}{*{20}c} {G_{x} \gamma _{0} \sqrt{\pi a} } \\ {G_{y} \gamma _{0} \sqrt{\pi a} } \\ \end{array} }} \right\} \end{aligned}$$
(A27)

Appendix B

$$\begin{aligned}&\int \limits _0^1 {\frac{T_{n} ({{\overline{r}}} )\sin (s{{\overline{r}}} )}{\sqrt{1-{{\overline{r}}}^{2}} }} \hbox {d}{{\overline{r}}} =\frac{\pi }{2}(-1)^{[(n-1)/2]}J_{n} (s),n=1,3,5\ldots , \end{aligned}$$
(B1)
$$\begin{aligned}&\int \limits _0^1 {\frac{T_{n} ({{\overline{r}}} )\cos (s{{\overline{r}}} )}{\sqrt{1-{{\overline{r}}}^{2}} }} \hbox {d}{{\overline{r}}} =\frac{\pi }{2}(-1)^{n/2}J_{n} (s),n=0,2,4,\ldots , \end{aligned}$$
(B2)

The above equations are equivalent to

$$\begin{aligned}&\int \limits _0^a {\frac{T_{n} (r/a)\sin (sr)}{\sqrt{a^{2}-r^{2}} }} \hbox {d}r=\frac{\pi }{2}(-1)^{[(n-1)/2]}J_{n} (sa),n=1,3,5\ldots , \end{aligned}$$
(B3)
$$\begin{aligned}&\int \limits _0^a {\frac{T_{n} (r/a)\cos (sr)}{\sqrt{a^{2}-r^{2}} }} \hbox {d}r=\frac{\pi }{2}(-1)^{n/2}J_{n} (sa),n=0,2,4\ldots , \end{aligned}$$
(B4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.E. Multiple rigid line inclusions (anti-cracks) in a multilayered orthotropic medium under anti-plane loading. Z. Angew. Math. Phys. 73, 40 (2022). https://doi.org/10.1007/s00033-021-01658-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01658-9

Keywords

Mathematics Subject Classification

Navigation