Log in

Weyl Group Characters Afforded By Zero Weight Spaces

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be a compact Lie group with Weyl group W. We give a formula for the character of W on the zero weight space of any finite-dimensional representation of G. The formula involves weighted partition functions, generalizing Kostant’s partition function. On the elliptic set of W, the partition functions are trivial. On the elliptic regular set, the character formula is a monomial product of certain coroots, up to a constant equal to 0 or ± 1. This generalizes Kostant’s formula for the trace of a Coxeter element on a zero weight space. If the long element w0 = − 1, our formula gives a method for determining all representations of G for which the zero weight space is irreducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The terminology “regular in W” follows Springer [35]. It differs from the notion of regularity of elements of G: If w is regular in W then the elements of wG need not be regular in G.

References

  1. Ariki, S.: On the representations of the Weyl groups of type D corresponding to the zero weights of the representations of \({{SO}}(2n,\mathbb {C})\). Proc. Sym. Pure Math. 47(2), 327–342 (1987)

    Article  MathSciNet  Google Scholar 

  2. Amemiya, I., Iwahori, N., Koiki, K.: On some generalization of B. Kostant’s partition function, Manifolds and Lie groups, Papers in Honor of Yozô Matsushima, Prog. Math., 14 Birkhäuser (1981)

  3. Ariki, S, Matsuzawa, J., Terada, I.: Representations of Weyl groups on Zero Weight spaces of \(\mathfrak {g},\)-Modules. Algebraic and Topological Theories - to the memory of Dr. Takehiko Miyata, pp. 546–568 (1985)

  4. Atiyah, M., Segal, G.: The Index of Elliptic Operators II. Annals Math. 87(3), 531–545 (1968)

    Article  MathSciNet  Google Scholar 

  5. Beck, M., Robins, S: Computing the continuous discretely, Springer-Verlag (2007)

  6. Bourbaki, N.: Lie groups and Lie algebras Chap, vol. 4-6. Springer-Verlag, Berlin (2002)

    Book  Google Scholar 

  7. Bourbaki, N.: Lie groups and Lie algebras Chap, vol. 7-9. Springer-Verlag, Berlin (2002)

    Book  Google Scholar 

  8. Brion, M., Vergne, M.: Residue formulae, vector partition functions and lattice points in rational polytopes. J. Amer. Math. Soc. 10(4), 797–833 (1997)

    Article  MathSciNet  Google Scholar 

  9. Cartan, É: La géométrie des groupes simples. Ann. di Mat. 4, 209–256 (1927)

    Article  MathSciNet  Google Scholar 

  10. Carter, R.: Finite groups of Lie type. Conjugacy classes and complex characters, Wiley (1985)

  11. Cartier, P.: On H. Weyl’s character formula. Bull. Amer. Math. Soc. 67(2), 228–230 (1961)

    Article  MathSciNet  Google Scholar 

  12. Gay, D.: Characters of the Weyl group of SU(n) on zero weight spaces and centralizers of permutation representations Rocky Mountain. J. Math. 6(5), 449–455 (1976)

    MathSciNet  MATH  Google Scholar 

  13. Geck, M., Pfeiffer, G.: Characters of finite Coxeter groups and Iwahori-Hecke algebras. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  14. Gutkin, E.A.: Representations of the Weyl group in the space of vectors of zero weight. (in Russian) Uspehi Mat Nauk. 28(5), 237–238 (1973)

    MathSciNet  Google Scholar 

  15. Humphreys, J.E.: Introduction to Lie algebras and representation theory. Springer-Verlag, New York (1972)

    Book  Google Scholar 

  16. Humphreys, J.E.: Weyl group representations on zero weight spaces. http://people.math.umass.edu/jeh/pub/zero.pdf

  17. Kac, V.: Infinite dimensional Lie algebras, 3rd ed. Cambridge (1995)

  18. Kac, V.: Simple Lie groups and the Legendre Symbol. Lecture Notes in Math. 848, 110–124 (1981)

    Article  MathSciNet  Google Scholar 

  19. Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math. 81, 973–1032 (1959)

    Article  MathSciNet  Google Scholar 

  20. Kostant, B.: A formula for the multiplicity of a weight. Trans. AMS. 93, 53–73 (1959)

    Article  MathSciNet  Google Scholar 

  21. Kostant, B.: On Macdonald’s η-function formula, the Laplacian and Generalized Exponents. Adv. Math. 20, 179–212 (1976)

    Article  MathSciNet  Google Scholar 

  22. Kumar, S., Prasad, D.: Dimension of zero weight space: An algebro-geometric approach. J. Alg. 403, 324–344 (2014)

    Article  MathSciNet  Google Scholar 

  23. Mavrides, L.: Zero weight spaces of irreducible representations of classical Lie algebras and G2. http://homepages.warwick.ac.uk/masdf/research/y2_mavrides.pdf (2009)

  24. Macdonald, I.G.: Some irreducible representations of Weyl groups. Bull. London Math. Soc 4, 148–150 (1972)

    Article  MathSciNet  Google Scholar 

  25. Popoviciu, T.: Asupra unei probleme de patitie a numerelor Acad. Republicii Populare Romane, Filiala Cluj, Studii si cercetari stiintifice 4, 7–58 (1953)

    Google Scholar 

  26. Prasad, D.: Half the sum of positive roots, the Coxeter element, and a theorem of Kostant. Forum Math. 28(1), 193–199 (2016)

    Article  MathSciNet  Google Scholar 

  27. Reeder, M.: On the cohomology of compact Lie groups. L’Enseignement Math. 41, 181–200 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Reeder, M.: Whittaker functions, prehomogeneous vector spaces and standard representations of p-adic groups. J. Reine angew. Math. 520, 37–93 (1997)

    MathSciNet  Google Scholar 

  29. Reeder, M.: Euler Poincare pairings and elliptic representation theory of Weyl groups and p-adic groups. Comp. Math. 129, 149–181 (2001)

    Article  Google Scholar 

  30. Reeder, M.: Zero weight spaces and the Springer correspondence. Indag. Math N.S. 9(3), 431–441 (1998)

    Article  MathSciNet  Google Scholar 

  31. Reeder, M.: Small representations and minuscule Richardson orbits. Int. Math. Research Notices 2002(5), 257–275 (2002)

    Article  MathSciNet  Google Scholar 

  32. Reeder, M.: Torsion automorphisms of simple Lie algebras. L’Enseignement Math. 56(2), 3–47 (2010)

    Article  MathSciNet  Google Scholar 

  33. Reeder, M: Thomae’s function on a Lie group, arxiv:2108.00235 (2021)

  34. Reeder, M., Levy, P., Yu, J.-K., Gross, B.: Gradings of positive rank on simple Lie algebras. Transformation Groups 17(4), 1123–1190 (2012)

    Article  MathSciNet  Google Scholar 

  35. Springer, T.A.: Regular elements in finite reflection groups. Inv. Math. 25, 159–198 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Reeder.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

In memory of Bert Kostant

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reeder, M. Weyl Group Characters Afforded By Zero Weight Spaces. Transformation Groups (2022). https://doi.org/10.1007/s00031-022-09709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00031-022-09709-9

Navigation