Log in

Galois closures and elementary components of Hilbert schemes of points

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Bhargava and the first-named author of this paper introduced a functorial Galois closure operation for finite-rank ring extensions, generalizing constructions of Grothendieck and Katz–Mazur. In this paper, we generalize Galois closures and apply them to construct a new infinite family of irreducible components of Hilbert schemes of points. We show that these components are elementary, in the sense that they parametrize algebras supported at a point. Furthermore, we produce secondary families of elementary components obtained from Galois closures by modding out by suitable socle elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Also referred to as the \(S_n\)-closure.

  2. We wholeheartedly thank the anonymous referee for noting that Theorem 1.1 should hold in greater generality.

References

  1. Bhargava, M.: Higher composition laws. III. The parametrization of quartic rings. Ann. Math. (2) 159(3), 1329–1360 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bhargava, M.: Higher composition laws. IV. The parametrization of quintic rings. Ann. Math. (2) 167(1), 53–94 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14(3), 535–554 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bhargava, M., Satriano, M.: On a notion of “Galois closure’’ for extensions of rings. J. Eur. Math. Soc. (JEMS) 16(9), 1881–1913 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cartwright, D.A., Erman, D., Velasco, M., Viray, B.: Hilbert schemes of 8 points. Algebra Number Theory 3(7), 763–795 (2009)

    Article  MathSciNet  Google Scholar 

  6. Chevalley, S.C.: 2e année: 1958. Anneaux de Chow et applications, Secrétariat mathématique, 11 rue Pierre Curie, Paris (1958)

  7. Erman, D., Velasco, M.: A syzygetic approach to the smoothability of zero-dimensional schemes. Adv. Math. 224(3), 1143–1166 (2010)

    Article  MathSciNet  Google Scholar 

  8. Fogarty, J.: Algebraic families on an algebraic surface. Am. J. Math. 90, 511–521 (1968)

    Article  MathSciNet  Google Scholar 

  9. Grothendieck, A.: Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Vol. 6. Soc. Math. France, Paris, 1995. Exp. No. 221, pp. 249–276 (1961)

  10. Haiman, M.: Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (2001)

    Article  MathSciNet  Google Scholar 

  11. Hartshorne, R.: Deformation Theory. Graduate Texts in Mathematics, vol. 257. Springer, New York (2010)

    Google Scholar 

  12. Ho, W., Satriano, M.: Galois closures of non-commutative rings and an application to Hermitian representations. Int. Math. Res. Not. IMRN 21, 7944–7974 (2020)

    Article  MathSciNet  Google Scholar 

  13. Huibregtse, M.E.: Some elementary components of the Hilbert scheme of points. Rocky Mt. J. Math. 47(4), 1169–1225 (2017)

    Article  MathSciNet  Google Scholar 

  14. Huibregtse, M.E.: More elementary components of the Hilbert scheme of points (2021). ar**v:2102.00494

  15. Iarrobino, A.: Reducibility of the families of \(0\)-dimensional schemes on a variety. Invent. Math. 15, 72–77 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  16. Iarrobino, A.: The number of generic singularities. Rice Univ. Stud. 59(1), 49–51 (1973)

    MathSciNet  Google Scholar 

  17. Iarrobino, A.: Compressed algebras: Artin algebras having given socle degrees and maximal length. Trans. Am. Math. Soc. 285(1), 337–378 (1984)

    Article  MathSciNet  Google Scholar 

  18. Iarrobino, A.: Hilbert scheme of points: overview of last ten years. Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics, vol. 46. American Mathematical Society, Providence, pp. 297–320 (1987)

  19. Iarrobino, A., Emsalem, J.: Some zero-dimensional generic singularities; finite algebras having small tangent space. Compos. Math. 36(2), 145–188 (1978)

    MathSciNet  Google Scholar 

  20. Iarrobino, A., Kanev, V.: Power Sums, Gorenstein algebras, and Determinantal Loci. Lecture Notes in Mathematics, vol. 1721. Springer, Berlin (1999)

    Book  Google Scholar 

  21. Ito, Y., Nakajima, H.: McKay correspondence and Hilbert schemes in dimension three. Topology 39(6), 1155–1191 (2000)

    Article  MathSciNet  Google Scholar 

  22. Jelisiejew, J.: Elementary components of Hilbert schemes of points. J. Lond. Math. Soc. (2) 100(1), 249–272 (2019)

    Article  MathSciNet  Google Scholar 

  23. Jelisiejew, J.: Pathologies on the Hilbert scheme of points. Invent. Math. 220(2), 581–610 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Katz, N.M., Mazur, B.: Arithmetic moduli of elliptic curves. Annals of Mathematics Studies, vol. 108. Princeton University Press, Princeton (1985)

  25. Lichtenbaum, S., Schlessinger, M.: The cotangent complex of a morphism. Trans. Am Math. Soc. 128, 41–70 (1967)

    Article  MathSciNet  Google Scholar 

  26. Poonen, B.: Isomorphism types of commutative algebras of finite rank over an algebraically closed field. Computational Arithmetic Geometry, Contemporary Mathematics, vol. 463, pp. 111–120. American Mathematical Society, Providence (2008)

  27. Poonen, B.: The moduli space of commutative algebras of finite rank. J. Eur. Math. Soc. (JEMS) 10(3), 817–836 (2008)

    Article  MathSciNet  Google Scholar 

  28. Sagan, B.E.: The Symmetric Group, Graduate Texts in Mathematics, vol. 203, 2nd edn. Springer, New York (2001). Representations, combinatorial algorithms, and symmetric functions

  29. Shafarevich, I.R.: Deformations of commutative algebras of class \(2\). Algebra i Analiz 2(6), 178–196 (1990)

    MathSciNet  Google Scholar 

  30. Satriano, M., Staal, A.P.: Small elementary components of Hilbert schemes of points. Forum Math. Sigma 11, Paper No. e45, 36 (2023)

Download references

Acknowledgements

It is a pleasure to thank Joachim Jelisiejew for comments on an earlier draft of this paper. We are deeply indebted to the anonymous referee whose suggestions both shortened our arguments and generalized our results. The referee greatly simplified our proofs of Propositions 4.6 and 4.9, and noted that our results should extend to the case when \(m\ne n-1\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Satriano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MS was partially supported by a Discovery Grant from the National Science and Engineering Research Council of Canada and a Mathematics Faculty Research Chair.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satriano, M., Staal, A.P. Galois closures and elementary components of Hilbert schemes of points. Sel. Math. New Ser. 30, 28 (2024). https://doi.org/10.1007/s00029-024-00915-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-024-00915-9

Mathematics Subject Classification

Navigation