Log in

Upper bounds for constant slope p-adic families of modular forms

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study p-adic families of eigenforms for which the p-th Hecke eigenvalue \(a_p\) has constant p-adic valuation (“constant slope families”). We prove two separate upper bounds for the size of such families. The first is in terms of the logarithmic derivative of \(a_p\) while the second depends only on the slope of the family. We also investigate the numerical relationship between our results and the former Gouvêa–Mazur conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We do not explain Pollack’s method here. It is generally based on combining the Mazur–Tate–Teitelbaum conjecture with calculations of p-adic L-functions. The reader may also be interested in the recent works [1, 29].

References

  1. Anni, S., Böckle, G., Gräf, P. M., Troya, A.: Computing \(\cal{L}\)-invariants via the Greenberg-Stevens formula. Preprint (2018). ar**v:1807.10082

  2. Ash, A., Stevens, G.: Modular forms in characteristic \(l\) and special values of their \(L\)-functions. Duke Math. J. 53(3), 849–868 (1986)

    Article  MathSciNet  Google Scholar 

  3. Bellaïche, J.: Critical \(p\)-adic \(L\)-functions. Invent. Math. 189(1), 1–60 (2012)

    Article  MathSciNet  Google Scholar 

  4. Benois, D.: A generalization of Greenberg’s \(\mathscr {L}\)-invariant. Am. J. Math. 133(6), 1573–1632 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bergdall, J., Levin, B.: Reductions of some two-dimensional crystalline representations via Kisin modules. Preprint. ar**v:1908.09036

  6. Bergdall, J., Pollack, R.: Website: Data on Fredholm series for the \({U}_p\) operator. http://math.bu.edu/people/rpollack/fredholm_series/index.html

  7. Bergdall, J., Pollack, R.: Arithmetic properties of Fredholm series for \(p\)-adic modular forms. Proc. Lond. Math. Soc. 113(3), 419–444 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bergdall, J., Pollack, R.: Slopes of modular forms and the ghost conjecture. Int. Math. Res. Not. IMRN 4, 1125–1144 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berger, L., Li, H., Zhu, H.J.: Construction of some families of 2-dimensional crystalline representations. Math. Ann. 329(2), 365–377 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis, volume 261 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. A Systematic Approach to Rigid Analytic Geometry. Springer-Verlag, Berlin (1988)

    Google Scholar 

  11. Breuil, C.: Sur quelques représentations modulaires et \(p\)-adiques de \({\rm GL}_2({\bf Q}_p)\). II. J. Inst. Math. Jussieu 2(1), 23–58 (2003)

    MATH  Google Scholar 

  12. Breuil, C., Mézard, A.: Multiplicités modulaires et représentations de \({\rm GL}_2({\bf Z}_p)\) et de \({\rm Gal}(\overline{\bf Q}_p/{\bf Q}_p)\) en \(l=p\). With an appendix by Guy Henniart. Duke Math. J. 115(2), 205–310 (2002)

    Article  MathSciNet  Google Scholar 

  13. Buzzard, K.: Questions about slopes of modular forms. Astérisque 298, 1–15 (2005). Automorphic forms. I

    MathSciNet  MATH  Google Scholar 

  14. Buzzard, K.: Eigenvarieties. In \(L\)-functions and Galois Representations, volume 320 of London Math. Soc. Lecture Note Ser., pp. 59–120. Cambridge University Press, Cambridge (2007)

  15. Buzzard, K., Calegari, F.: A counterexample to the Gouvêa–Mazur conjecture. C. R. Math. Acad. Sci. Paris 338(10), 751–753 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Buzzard, K., Gee, T.: Slopes of modular forms. In: Müller, W., Shin, S.W., Templier, N. (eds.) Families of Automorphic Forms and the Trace Formula, Simons Symposia, pp. 93–109. Springer International Publishing, Berlin (2016)

    Chapter  MATH  Google Scholar 

  17. Buzzard, K., Kilford, L.J.P.: The 2-adic eigencurve at the boundary of weight space. Compos. Math. 141(3), 605–619 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coleman, R., Stevens, G., Teitelbaum, J.: Numerical experiments on families of \(p\)-adic modular forms. In Computational Perspectives on Number Theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math., pp. 143–158. Am. Math. Soc., Providence, RI (1998)

  19. Coleman, R.F.: Classical and overconvergent modular forms. Invent. Math. 124(1–3), 215–241 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Coleman, R.F.: \(p\)-adic Banach spaces and families of modular forms. Invent. Math. 127(3), 417–479 (1997)

    Article  MathSciNet  Google Scholar 

  21. Coleman, R.F., Edixhoven, B.: On the semi-simplicity of the \(U_p\)-operator on modular forms. Math. Ann. 310(1), 119–127 (1998)

    Article  MathSciNet  Google Scholar 

  22. Coleman, R. F., Mazur, B.: The eigencurve. In Galois representations in arithmetic algebraic geometry (Durham, 1996), volume 254 of London Math. Soc. Lecture Note Ser., pp. 1–113. Cambridge University Press, Cambridge (1998)

  23. Colmez, P.: Invariants \(\mathscr {L}\) et dérivées de valeurs propres de Frobenius. Astérisque 331, 13–28 (2010)

    MATH  Google Scholar 

  24. Conrad, B.: Irreducible components of rigid spaces. Ann. Inst. Fourier (Grenoble) 49(2), 473–541 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Emerton, M.: 2-adic modular forms of minimal slope. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–Harvard University (1998)

  26. Fontaine, J.-M.: Représentations \(p\)-adiques semi-stables. Astérisque, (223):113–184, 1994. With an appendix by Pierre Colmez, Périodes \(p\)-adiques (Bures-sur-Yvette, 1988)

  27. Gouvêa, F.Q.: Where the slopes are. J. Ramanujan Math. Soc. 16(1), 75–99 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Gouvêa, F.Q., Mazur, B.: Families of modular eigenforms. Math. Comp. 58(198), 793–805 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gräf, P. M.: A control theorem for \(p\)-adic automorphic forms and Teitelbaum’s \({\cal{L}}\)-invariant. To appear in The Ramanujan Journal

  30. Greenberg, R.: Trivial zeros of \(p\)-adic \(L\)-functions. In \(p\)-adic monodromy and the Birch and Swinnerton–Dyer conjecture (Boston, MA, 1991), volume 165 of Contemp. Math., pp. 149–174. Am. Math. Soc., Providence, RI (1994)

  31. Hida, H.: Galois representations into \({\rm GL}_2({ Z}_p[[X]])\) attached to ordinary cusp forms. Invent. Math. 85(3), 545–613 (1986)

    Article  MathSciNet  Google Scholar 

  32. Kilford, L.J.P.: On the slopes of the \(U_5\) operator acting on overconvergent modular forms. J. Théor. Nombres Bordeaux 20(1), 165–182 (2008)

    Article  MathSciNet  Google Scholar 

  33. Kilford, L.J.P., McMurdy, K.: Slopes of the \(U_7\) operator acting on a space of overconvergent modular forms. LMS J. Comput. Math. 15, 113–139 (2012)

    Article  MathSciNet  Google Scholar 

  34. Lauder, A.G.B.: Computations with classical and \(p\)-adic modular forms. LMS J. Comput. Math. 14, 214–231 (2011)

    Article  MathSciNet  Google Scholar 

  35. Liu, R., Wan, D., **ao, L.: The eigencurve over the boundary of the weight space. Duke Math. J. 166(9), 1739–1787 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mazur, B.: On monodromy invariants occurring in global arithmetic, and Fontaine’s theory. In \(p\)-adic monodromy and the Birch and Swinnerton-Dyer Conjecture (Boston, MA, 1991), volume 165 of Contemp. Math., pages 1–20. Am. Math. Soc., Providence, RI (1994)

  37. Mok, C.P.: \(\mathscr {L}\)-invariant of the adjoint Galois representation of modular forms of finite slope. J. Lond. Math. Soc. (2) 86(2), 626–640 (2012)

    Article  MathSciNet  Google Scholar 

  38. Roe, D.: The 3-adic eigencurve at the boundary of weight space. Int. J. Number Theory 10(7), 1791–1806 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rozensztajn, S.: On the locus of 2-dimensional crystalline representations with a given reduction modulo \(p\). Preprint (2018). ar**v:1705.01060

  40. Saha, J.P.: Conductors in \(p\)-adic families. The Ramanujan J. 44, 1–8 (2016)

    MathSciNet  Google Scholar 

  41. Scholl, A.J.: Motives for modular forms. Invent. Math. 100(2), 419–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4), 259–331 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  43. Serre, J.-P.: Sur les représentations modulaires de degré \(2\) de \({\rm Gal}(\overline{ Q}/{ Q})\). Duke Math. J. 54(1), 179–230 (1987)

    Article  MathSciNet  Google Scholar 

  44. Wan, D.: Dimension variation of classical and \(p\)-adic modular forms. Invent. Math. 133(2), 449–463 (1998)

    Article  MathSciNet  Google Scholar 

  45. Wan, D., **ao, L., Zhang, J.: Slopes of eigencurves over boundary disks. Math. Ann. 369(1–2), 487–537 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research reported on here was partially supported by NSF award DMS-1402005. The author thanks James Newton, Robert Pollack, Sandra Rozensztajn, and an anonymous referee for helpful discussions and comments. There are some computer calculations given below that were made by Pollack; we also thank him for access to this data. In addition, during the elaboration of this work we also benefited from short visits to, and the hospitality at, Imperial College (London), the Institut des Hautes Études Scientifiques (Bures-sur-Yvette), and the Max-Planck-Institut für Mathematik (Bonn). The staff and members of these institutions are duly thanked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bergdall.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergdall, J. Upper bounds for constant slope p-adic families of modular forms. Sel. Math. New Ser. 25, 59 (2019). https://doi.org/10.1007/s00029-019-0505-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0505-8

Mathematics Subject Classification

Navigation