Log in

A fully nonlinear Feynman–Kac formula with derivatives of arbitrary orders

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We present an algorithm for the numerical solution of nonlinear parabolic partial differential equations. This algorithm extends the classical Feynman–Kac formula to fully nonlinear partial differential equations, by using random trees that carry information on nonlinearities on their branches. It applies to functional, non-polynomial nonlinearities that are not treated by standard branching arguments, and deals with derivative terms of arbitrary orders. A Monte Carlo numerical implementation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

No new data were created during the study.

References

  1. C. Beck, S. Becker, P. Cheridito, A. Jentzen, and A. Neufeld. Deep splitting method for parabolic PDEs. Preprint ar**v:1907.03452, 2019.

  2. S. Becker, R. Braunwarth, M. Hutzenthaler, A. Jentzen, and Ph. von Wurstemberger. Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations. Preprint ar**v:2005.10206v2, 2020.

  3. S. Bonaccorsi, M. D’Ovidio, and S. Mazzucchi. Probabilistic representation formula for the solution of fractional high-order heat-type equations. J. Evol. Equ., 19:523–558, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Beck, W. E, and A. Jentzen. Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. J. Nonlinear Sci., 29(4):1563–1619, 2019.

  5. Y. Bruned, M. Hairer, and L. Zambotti. Algebraic renormalisation of regularity structures. Invent. Math., 215:1039–1156, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.C. Butcher. Coefficients for the study of Runge-Kutta integration processes. J. Austral. Math. Soc., 3:185–201, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.C. Butcher. Trees and numerical methods for ordinary differential equations. Numerical Algorithms, 53:153–170, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Connes and D. Kreimer. Lessons from quantum field theory: Hopf algebras and spacetime geometries. Letters in Mathematical Physics, 48:85–96, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Chakraborty and J.A. López-Mimbela. Nonexplosion of a class of semilinear equations via branching particle representations. Advances in Appl. Probability, 40:250–272, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  10. G.M. Constantine and T.H. Savits. A multivariate Faa di Bruno formula with applications. Trans. Amer. Math. Soc., 348(2):503–520, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Cheridito, H.M. Soner, N. Touzi, and N. Victoir. Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Comm. Pure Appl. Math., 60(7):1081–1110, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Deuflhard and F. Bornemann. Scientific Computing with Ordinary Differential Equations, volume 42 of Texts in Applied Mathematics. Springer-Verlag, New York, 2002.

  13. W. E, M. Hutzenthaler, A. Jentzen, and T. Kruse. On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations. Journal of Scientific Computing, 79:1534–1571, 2019.

  14. W. E, M. Hutzenthaler, A. Jentzen, and T. Kruse. Multilevel Picard iterations for solving smooth semilinear parabolic heat equations. Partial Differential Equations and Applications, 2, 2021.

  15. L. Fossy. Algebraic structures on typed decorated rooted trees. SIGMA, 17:1–28, 2021.

    MathSciNet  Google Scholar 

  16. A. Fahim, N. Touzi, and X. Warin. A probabilistic numerical method for fully nonlinear parabolic PDEs. Ann. Appl. Probab., 21(4):1322–1364, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Gubinelli. Ramification of rough paths. J. Differential Equations, 248(4):693–721, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Guo, J. Zhang, and J. Zhuo. A monotone scheme for high-dimensional fully nonlinear PDEs. Ann. Appl. Probab., 25(3):1540–1580, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Han, A. Jentzen, and W. E. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Preprint ar**v:1706.04702, 39 pages, 2017.

  20. J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

  21. M. Hutzenthaler, A. Jentzen, and T. Kruse. Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities. Found. Comput. Math., 22:905–966, 2022.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Hutzenthaler, A. Jentzen, T. Kruse, and T.A. Nguyen. Multilevel Picard approximations for high-dimensional semilinear second-order PDEs with Lipschitz nonlinearities. Preprint ar**v:2009.02484v4, 2020.

  23. P. Henry-Labordère. Counterparty risk valuation: a marked branching diffusion approach. Preprint ar**v:1203.2369, 2012.

  24. P. Henry-Labordère, N. Oudjane, X. Tan, N. Touzi, and X. Warin. Branching diffusion representation of semilinear PDEs and Monte Carlo approximation. Ann. Inst. H. Poincaré Probab. Statist., 55(1):184–210, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Henry-Labordère and N. Touzi. Branching diffusion representation for nonlinear Cauchy problems and Monte Carlo approximation. Ann. Appl. Probab., 31(5):2350–2375, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Henry-Labordère, X. Tan, and N. Touzi. A numerical algorithm for a class of BSDEs via the branching process. Stochastic Processes and their Applications, 124(2):1112–1140, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.

  28. S. Huang, G. Liang, and T. Zariphopoulou. An approximation scheme for semilinear parabolic PDEs with convex and coercive Hamiltonians. SIAM J. Control Optim., 58(1):165–191, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Huré, H. Pham, and X. Warin. Deep backward schemes for high-dimensional nonlinear PDEs. Mathematics of Computation, 2020.

  30. N. Ikeda, M. Nagasawa, and S. Watanabe. Branching Markov processes I, II, III. J. Math. Kyoto Univ., 8-9:233–278, 365–410, 95–160, 1968-1969.

  31. N.V. Krylov. Boundedly nonhomogeneous elliptic and parabolic equations. Math. USSR, Izv., 20:459–492, 1983.

  32. T. Kong, W. Zhao, and T. Zhou. Probabilistic high order numerical schemes for fully nonlinear parabolic PDEs. Commun. Comput. Phys., 18(5):1482–1503, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  33. W. Lefebvre, G. Loeper, and H. Pham. Differential learning methods for solving fully nonlinear PDEs. Preprint ar**v:2205.09815, 2022.

  34. H.P. McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math., 28(3):323–331, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  35. R.I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier. Butcher series: a story of rooted trees and numerical methods for evolution equations. Asia Pac. Math. Newsl., 7(1):1–11, 2017.

    MathSciNet  Google Scholar 

  36. A. Neufeld and S. Wu. Multilevel Picard approximation algorithm for semilinear partial integro-differential equations and its complexity analysis. Preprint ar**v:2205.09639, 2022.

  37. S. Peng. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics Stochastics Rep., 37(1-2):61–74, 1991.

    MathSciNet  MATH  Google Scholar 

  38. É. Pardoux and S. Peng. Backward stochastic differential equations and quasilinear parabolic partial differential equations. In Stochastic partial differential equations and their applications (Charlotte, NC, 1991), volume 176 of Lecture Notes in Control and Inform. Sci., pages 200–217. Springer, Berlin, 1992.

  39. G. Penent and N. Privault. Existence and probabilistic representation of the solutions of semilinear parabolic PDEs with fractional Laplacians. Stochastics and Partial Differential Equations: Analysis and Computations, 10:446–474, 2022.

    Article  MathSciNet  MATH  Google Scholar 

  40. G. Penent and N. Privault. Numerical evaluation of ODE solutions by Monte Carlo enumeration of Butcher series. BIT Numerical Mathematics, 62:1921–1944, 2022.

    Article  MathSciNet  MATH  Google Scholar 

  41. H. Pham, X. Warin, and M. Germain. Neural networks-based backward scheme for fully nonlinear PDEs. Partial Differ. Equ. Appl., 2(1):Paper No. 16, 24, 2021.

  42. A.V. Skorokhod. Branching diffusion processes. Teor. Verojatnost. i. Primenen., 9:492–497, 1964.

    MathSciNet  Google Scholar 

  43. J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 375:1339–1364, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  44. H.M. Soner, N. Touzi, and J. Zhang. Wellposedness of second order backward SDEs. Probab. Theory Related Fields, 153(1-2):149–190, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  45. X. Tan. A splitting method for fully nonlinear degenerate parabolic PDEs. Electron. J. Probab., 18:no. 15, 24, 2013.

Download references

Acknowledgements

We thank an anonymous referee for insightful comments that helped us improve this paper. This research is supported by the Ministry of Education, Singapore, under its Tier 2 Grant MOE-T2EP20120-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Privault.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Computer codes

A Computer codes

The following codes implement the algorithm of Theorem 1 in Mathematica using an exponential distribution \(\rho (t) = \textrm{e}^{-t}\), \(t\ge 0\). In the above examples the values of fdb[n,k] have been precomputed by memoization for k up to 7 in order to speed up the solution algorithm, where n denotes the highest order of derivative \(\partial _x^n\) in (1.1). The next code implements the mechanism \(c \mapsto {\mathcal {M}}(c)\) in the procedure “codetofunction” via the combinatorics of the Faà di Bruno formula written the function “fdb”.

figure b

Numerical solution estimates are then computed using the following program, in which the code \(\partial _x^k\) is represented by \(\{-k\}\), \(k\ge 1\), and the code \(\big ( \partial _{z_0}^{\lambda _0} \cdots \partial _{z_n}^{\lambda _n} f\big )^* \) is represented by \(\{ \lambda _0, \ldots , \lambda _n \} \in {\mathord {{\mathbb {R}}}}^{n+1}\).

figure c

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguwi, J.Y., Penent, G. & Privault, N. A fully nonlinear Feynman–Kac formula with derivatives of arbitrary orders. J. Evol. Equ. 23, 22 (2023). https://doi.org/10.1007/s00028-023-00873-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-023-00873-3

Keywords

Mathematics Subject Classification

Navigation