Log in

A Spin Analog of the Plethystic Murnaghan–Nakayama Rule

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

As a spin analog of the plethystic Murnaghan–Nakayama rule for Schur functions, the plethystic Murnaghan–Nakayama rule for Schur Q-functions is established with the help of the vertex operator realization. This generalizes both the Murnaghan–Nakayama rule and the Pieri rule for Schur Q-functions. A plethystic Murnaghan–Nakayama rule for Hall–Littlewood functions is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated during the study are included in the article.

References

  1. T. H. Baker, Symmetric function products and plethysms and the boson-fermion correspondence. J. Phys. A 28 (1995), 589-606.

    Article  MathSciNet  Google Scholar 

  2. Y. Cao, N. **g, N. Liu, Plethystic Murnaghan-Nakayama rule via vertex operators, ar**v:2212.08412.

  3. E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations. IV. A new type of soliton equations of KP-type, Phys. D 4 (1981/82), 343-365.

  4. J. Désarménien, B. Leclerc and J. Y. Thibon, Hall-Littlewood functions and Kostka-Foulkes polynomials in representation theory. Sém. Lothar. Combin. 32 (1994), Art. B32c, 38 pp.

  5. A. Evseev, R. Paget and M. Wildon, Character deflations and a generalization of the Murnaghan-Nakayama rule. J. Group Theory 17 (2014), no. 6, 1035-1070.

    Article  MathSciNet  Google Scholar 

  6. B. Hall, Lie groups, Lie algebras, and representations. An elementary introduction. Second edition. Graduate Texts in Mathematics, 222. Springer, Cham, 2015. xiv+449 pp.

  7. N. **g, Vertex operators, symmetric functions and the spin group\(\Gamma _n\), J. Algebra 138 (1991), 340-398.

    Article  MathSciNet  Google Scholar 

  8. N. **g, Vertex operators and Hall-Littlewood symmetric functions, Adv. Math. 87 (1991), 226-248.

    Article  MathSciNet  Google Scholar 

  9. N. **g, N. Liu, The Green polynomials via vertex operator, J. Pure Appl. Algebra 226 (2022), Paper No. 107032.

  10. D. E. Littlewood, The theory of group characters and matrix representations of groups. Oxford University Press, New York 1940. viii+292 pp.

  11. D. E. Littlewood, On orthogonal and symplectic group characters. J. London Math. Soc. 30, (1955). 121-122.

    Article  MathSciNet  Google Scholar 

  12. I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Clarendon Press, Oxford, 1995.

    Book  Google Scholar 

  13. H. Mizukawa, Factorization of Schur’s Q-functions and plethysm, Ann. Comb. 6 (2002), 87-101.

    Article  MathSciNet  Google Scholar 

  14. I. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene linear Substitutionen, J. Reine Angen. Math. 139 (1911), 155-250.

    Article  Google Scholar 

  15. J. R. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Adv. Math. 74 (1989), 87-134.

    Article  MathSciNet  Google Scholar 

  16. M. Wildon, A combinatorial proof of a plethystic Murnaghan-Nakayama rule, SIAM J. Discrete Math. 30 (2016), 1526-1533.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for helpful comments and correcting an error in the original statement of Proposition 4.2. The project is partially supported by Simons Foundation under Grant No. 523868, NSFC Grant 12171303, and the Humboldt foundation. The second author also thanks Max-Planck Institute for Mathematics in the Sciences, Leipzig for hospitality during the project. The third author is supported by the China Scholarship Council and he also acknowledges the hospitality of the Faculty of Mathematics of the University of Vienna, where parts of the present work were completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naihuan **g.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Jang Soo Kim.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of (3.14):

\(B=(b_{ij})_{2n\times 2n}\) is an antisymmetric matrix obtained from \(A=(a_{ij})_{2n\times 2n}\) by rotating the first i rows and columns by the cyclic permutation \(\left( \begin{array}{ccccc} 1&{}2&{}\cdots &{}i-1&{}i\\ 2&{}3&{}\cdots &{}i&{}1\\ \end{array}\right) .\) Explicitly

$$\begin{aligned} b_{1j+1}= & {} {\left\{ \begin{array}{ll} a_{ij}&{} \text { if } j=1,2,\ldots ,i-1;\\ a_{i,j+1}&{} \text { if } j=i,i+1,\ldots ,2n. \end{array}\right. }\\ \quad B_{1j+1}= & {} {\left\{ \begin{array}{ll} A_{ij}&{} \text {if } j=1,2,\ldots ,i-1;\\ A_{i,j+1}&{} \text {if } j=i,i+1,\ldots ,2n. \end{array}\right. } \end{aligned}$$

Therefore \(\text {Pf(A)}=(-1)^{i-1}\text {Pf(B)}.\) It follows from (3.13) that

$$\begin{aligned} \text {Pf(B)}&=\sum _{j=2}^{2n}(-1)^{j}b_{1j}\text {Pf}(B_{1j})\\&=\sum _{j=1}^{i-1}(-1)^{j+1}b_{1j+1}\text {Pf}(B_{1j+1})+\sum _{j=i+1}^{2n}(-1)^{j}b_{1j}\text {Pf}(B_{1j})\\&=\sum _{j=1}^{i-1}(-1)^{j+1}a_{ij}\text {Pf}(A_{ij})+\sum _{j=i+1}^{2n}(-1)^{j}a_{ij}\text {Pf}(A_{ij})\\&=\sum _{j=1}^{i-1}(-1)^{j}a_{ji}\text {Pf}(A_{ij})+\sum _{j=i+1}^{2n}(-1)^{j}a_{ij}\text {Pf}( A_{ij})\\&=\sum \limits _{j\ne i}(-1)^{j}:a_{ij}:\text {Pf}(A_{ij}). \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., **g, N. & Liu, N. A Spin Analog of the Plethystic Murnaghan–Nakayama Rule. Ann. Comb. 28, 655–679 (2024). https://doi.org/10.1007/s00026-023-00686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-023-00686-8

Keywords

Mathematics Subject Classification

Navigation