Log in

Global Nilpotent Reversible Centers with Cubic Nonlinearities Symmetric with Respect to the x-Axis

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let \(P_3(x,y)\) and \(Q_3(x,y)\) be polynomials of degree three without constant or linear terms. We characterize the global centers of all polynomial differential systems of the form \(\dot{x} = y+ P_3(x,y)\), \(\dot{y} =Q_3(x,y)\) that are reversible and invariant with respect to the x-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availibility

Not applicable, the study does not report any data.

References

  1. Álvarez, M.J., Ferragut, A., Jarque, X.: A survey on the blow up technique. Int. J. Bifur. Chaos 21, 3103–3118 (2011). https://doi.org/10.1142/S0218127411030416

    Article  MathSciNet  Google Scholar 

  2. Da Cruz, L.P.C., Llibre, J.: Global centers in a class of quintic polynomial differential system. Preprint

  3. Dias, F.S., Llibre, J., Valls, C.: Polynomial Hamiltonian systems of degree 3 with symmetric nilpotent centers. Math. Comput. Simul. 144, 60–77 (2018). https://doi.org/10.1016/j.matcom.2017.06.002

    Article  MathSciNet  Google Scholar 

  4. Dias, F., Mello, L.F., Valls, C.: Kukles systems of degree three with global centers. Bull. Braz. Math. Soc., 54, 46 (2023). https://doi.org/10.1007/s00574-023-00363-7

  5. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. UniversiText, Springer-Verlag, New York (2006)

    Google Scholar 

  6. Galeotti, M., Villarini, M.: Some properties of planar polynomial systems of even degree. Ann. Math. Pura Appl. 161, 299–313 (1992). https://doi.org/10.1007/BF01759643

    Article  MathSciNet  Google Scholar 

  7. García, I.A., Llibre, J.: Polynomial Liénard systems with a nilpotent global center. Rend. Circ. Mat. Palermo 72, 3625–3636 (2023). https://doi.org/10.1007/s12215-022-00850-8

    Article  MathSciNet  Google Scholar 

  8. García-Saldaña, J.D., Llibre, J., Valls, C.: Nilpotent global centers of linear systems with cubic homogeneous nonlinearities. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 30, 2050010 (2020). https://doi.org/10.1142/S0218127420500108

    Article  MathSciNet  Google Scholar 

  9. García-Saldaña, J., Llibre, J., Valls, C.: On a class of global centers of linear systems with quintic homogeneous nonlinearities. Dyn. Contin. Discreate Ser. A 30, 135–148 (2023)

    MathSciNet  Google Scholar 

  10. Llibre, J. and Rondón, G.: Global centers of a class of cubic polynomial differential systems. Preprint

  11. Llibre, J., Serantola, P.:New families of global cubic centers. São Paulo J. Math. Sci. (2024). https://doi.org/10.1007/s40863-024-00411-0

  12. Llibre, J., Valls, C.: Polynomial differential systems with even degree have no global centers. J. Math. Anal. Appl. 503, 125281 (2021). https://doi.org/10.1142/S0218127420500108

    Article  MathSciNet  Google Scholar 

  13. Sabatini, M.: A connection between isochronous Hamiltonian centers and the Jacobian conjecture. Nonlinear Anal. 34, 829–838 (1998). https://doi.org/10.1016/S0362-546X(97)00604-4

    Article  MathSciNet  Google Scholar 

  14. Llibre, J., Valls, C.: Global centers of generalized polynomial Líenard differential systems. J. Differ. Equ. 330, 66–80 (2022). https://doi.org/10.1016/j.jde.2022.05.013

    Article  Google Scholar 

  15. Llibre, J., Valls, C.: Reversible global centers with quintic homogeneous nonlinearities. Dyn. Syst. 38, 632–653 (2023). https://doi.org/10.1080/14689367.2023.2228737

    Article  MathSciNet  Google Scholar 

Download references

Funding

The first author is partially supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00. The second author is supported by FCT/Portugal through CAMGSD, IST-ID, projects UIDB/04459/2020 and UIDP/04459/2020.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the research and preparation of the manuscript.

Corresponding author

Correspondence to Montserrat Corbera.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Conditions in Theorem 1

Let

$$\begin{aligned} K^\pm {=}\frac{1}{27} \left( -2 a^3{+}3 a^2 d{+}9 a b{+}3 a d^2{-}18 b d{-}2 d^3\pm 2 \sqrt{\left( a^2-a d-3 b+d^2\right) ^3}\right) . \end{aligned}$$

The conditions in order that the origin is the unique finite singular point are the following ones:

$$\begin{aligned} c_1= & {} \{c=0,b=0,a=0\},\\ c_2= & {} \{c=0,b=0,a\ne 0,a\ge d\},\\ c_3= & {} \{c=0,b\ne 0,a^2-4b<0\},\\ c_4= & {} \{c=0,0<b\le a^2/4,d\le D^-\},\\ c_5= & {} \{c=0,b<0,d\le D^-\},\\ c_6= & {} \{c\ne 0,a=-d,b=d^2,c=-d^3\},\\ c_7= & {} \{c>0,a=c/d^2,b=-c/d,c\ne -d^3,d\ne 0\},\\ c_8= & {} \{c\ne 0, c=-bd,b\ne -ad, b>(a-d)^2/4\},\\ c_{9}= & {} \{c\ne 0,c=-bd, a> d,0< b \le (a-d)^2/4,d> 0 \},\\ c_{10}= & {} \{c\ne 0,c=-bd, a> -d, -a d<b \le (a-d)^2/4,d< 0 \},\\ c_{11}= & {} \{c\ne 0,c=-bd, 0< a< -d, -a d< b \le (a-d)^2/4,d< 0\}, \\ c_{12}= & {} \{c\ne 0,c=-bd, d< a \le 0,0< b \le (a-d)^2/4,d< 0 \},\\ c_{13}= & {} \{c\ne 0,c=-bd, a> 0, 0< b< -a d, d< 0 \}\\ c_{14}= & {} \{ c> 0,c + bd> 0, \Delta< 0\},\\ c_{15}= & {} \{ c> 0, c + bd< 0, \Delta< 0\},\\ c_{16}= & {} \{ a> 0, 0< b \le a^2/4,0< c< K^+|_{d=0},d = 0\},\\ c_{17}= & {} \{ a> 0, a^2/4< b< a^2/3, K^-|_{d=0}< c<K^+|_{d=0},d = 0\},\\ c_{18}= & {} \{a>-d, 0< b< -a d,-b d< c< K^+,d<0 \},\\ c_{19}= & {} \{a>-d,d(a-d)< b \le 0, 0< c< K^+,d<0\},\\ c_{20}= & {} \{a>-d,(a-d)^2/4< b< (a^2 - a d + d^2)/3, K^-< c< K^+,d<0 \},\\ c_{21}= & {} \{a>-d, -a d< b \le (a-d)^2/4, -b d< c< K^+, d<0 \},\\ c_{22}= & {} \{ a>2d, d(a - d)< b \le a^2/4,0< c< K^+, d>0\},\\ c_{23}= & {} \{a>2d, a^2/4< b< (a^2 - a d + d^2)/3, K^-< c< K^+,d>0\},\\ c_{24}= & {} \{d< a \le -d,0< b< (a-d)^2/4, -b d< c< K^+, d< 0\},\\ c_{25}= & {} \{ d< a \le -d, d(a-d)< b \le 0,0< c< K^+, d< 0 \},\\ c_{26}= & {} \{ a= -4 d, 0< b \le 4 d^2, 0< c< -b d, d< 0 \},\\ c_{27}= & {} \{ a= -4 d, 4d^2< b< 25d^2/4,K^-|_{a=-4d}< c< -b d, d< 0 \},\\ c_{28}= & {} \{ a=-d, 0< b \le d^2/4, 0< c< -b d, d< 0 \},\\ c_{29}= & {} \{ a=-d, d^2/4< b< d^2, K^-|_{a=-d}< c< -b d, d< 0 \},\\ c_{30}= & {} \{ a= d/2,0< b \le d^2/16, 0< c< -b d, d< 0 \},\\ c_{31}= & {} \{ a= d/2, d^2/16< b<d^2/4, K^-|_{a=d/2}< c< K^+|_{a=d/2}, d< 0 \},\\ c_{32}= & {} \{ a=d, 0< b \le d^2/4, 0< c< K^+|_{a=d}, d< 0 \},\\ c_{33}= & {} \{ a=d, d^2/4< b< d^2/3, K^-|_{a=d}< c< K^+|_{a=d}, d< 0 \},\\ c_{34}= & {} \{ a> -4 d, 0< b \le a^2/4, 0< c< -b d, d< 0 \},\\ c_{35}= & {} \{ a> -4 d, a^2/4< b< (a-d)^2/4, K^-< c< -b d, d< 0 \},\\ c_{36}= & {} \{ 0< a< -d, 0< b \le a^2/4, 0< c< -b d, d< 0 \},\\ c_{37}= & {} \{ 0< a< -d, a^2/4< b< -a d,K^-< c< -b d, d< 0 \},\\ c_{38}= & {} \{ 0< a< -d, (a-d)^2/4< b< (a^2 - a d + d^2)/3, K^-< c< K^+, d< 0 \},\\ c_{39}= & {} \{ 0< a< -d, -a d< b \le (a-d)^2/4, K^-< c< -b d, d< 0 \},\\ c_{40}= & {} \{-d< a< -4 d, 0< b \le a^2/4, 0< c< -b d, d< 0 \},\\ c_{41}= & {} \{ d< a< d/2, 0< b \le (a-d)^2/4, 0< c< -b d, d< 0 \},\\ c_{42}= & {} \{ d/2< a \le 0, 0< b \le a^2/4, 0< c< -b d, d< 0 \},\\ c_{43}= & {} \{ d< a< d/2, (a-d)^2/4< b \le a^2/4, 0< c< K^+, d< 0 \},\\ c_{44}= & {} \{ 2 d< a< d, d(a-d)< b \le a^2/4,0< c< K^+, d< 0 \},\\ c_{45}= & {} \{ -d< a< -4 d, a^2/4< b< (a-d)^2/4, K^-< c< -b d, d< 0 \},\\ c_{46}= & {} \{ d< a< d/2, a^2/4< b< (a^2 - a d + d^2)/3, K^-< c< K^+, d< 0 \},\\ c_{47}= & {} \{ 2 d< a< d, a^2/4< b< (a^2 - a d + d^2)/3, K^-< c< K^+, d< 0 \},\\ c_{48}= & {} \{ d/2< a \le 0, a^2/4< b \le (a-d)^2/4, K^-< c< -b d, d< 0 \},\\ c_{49}= & {} \{d/2< a \le 0, (a-d)^2/4< b< (a^2 - a d + d^2)/3, K^-< c< K^+, d< 0 \},\\ c_{50}= & {} \{ a>-d,b=(a^2-ad+d^2)/3,c=(a-2d)^3/27,d\le 0\},\\ c_{51}= & {} \{a>2d,b=(a^2-ad+d^2)/3,c=(a-2d)^3/27,d> 0 \},\\ c_{52}= & {} \{2d<a<-d,b=(a^2-ad+d^2)/3,c=(a-2d)^3/27,d< 0\},\\ c_{53}= & {} \{a> 0, a^2/4< b< a^2/3,c = K^-|_{d=0}, d = 0 \},\\ c_{54}= & {} \{a> 0,0< b \le a^2/4, c = K^+|_{d=0}, d = 0 \},\\ c_{55}= & {} \{a> 0, a^2/4< b< a^2/3, c = K^+|_{d=0}, d = 0\},\\ c_{56}= & {} \{ a> -d, (a-d)^2/4< b< (a^2 - a d + d^2)/3, c= K^-,d< 0 \},\\ c_{57}= & {} \{ a> 2 d,a^2/4< b< (a^2 - a d + d^2)/3, c=K^-, d> 0\},\\ c_{58}= & {} \{a> -d, d(a-d)< b< -a d, c= K^+, d< 0 \},\\ c_{59}= & {} \{ a> -d, (a-d)^2/4< b< (a^2 - a d + d^2)/3, c=K^+, d< 0 \},\\ c_{60}= & {} \{ a> -d, -a d< b \le (a-d)^2/4, c=K^+, d< 0 \},\\ c_{61}= & {} \{ a> 2 d, a^2/4< b< (a^2 - a d + d^2)/3,c=K^+,d> 0 \},\\ c_{62}= & {} \{ a> 2 d, d(a-d)< b \le a^2/4, c=K^+, d> 0\},\\ c_{63}= & {} \{ d< a \le -d, d(a-d)< b< (a-d)^2/4, c=K^+, d< 0 \},\\ c_{64}= & {} \{a=-4 d, 4d^2< b< 25d^2/4,c=K^-|_{a=-4d}, d< 0 \},\\ c_{65}= & {} \{ a=-d, d^2/4< b< d^2, c=K^-|_{a=-d}, d< 0\},\\ c_{66}= & {} \{ a=d/2, d^2/16< b< d^2/4, c=K^-|_{a=d/2}, d< 0 \},\\ c_{67}= & {} \{ a=d/2, d^2/16< b< d^2/4, c=K^+|_{a=d/2}, d< 0 \},\\ c_{68}= & {} \{ a = d, d^2/4< b< d^2/3, c=K^-|_{a=d}, d< 0\},\\ c_{69}= & {} \{ a = d, d^2/4< b< d^2/3,c=K^+|_{a=d}, d< 0\},\\ c_{70}= & {} \{a = d, 0< b \le d^2/4, c=K^+|_{a=d}, d< 0\},\\ c_{71}= & {} \{ a > -4 d, a^2/4< b< (a-d)^2/4, c=K^-, d< 0\},\\ c_{72}= & {} \{ 0< a< -d, a^2/4< b< -a d, c=K^-, d< 0\},\\ c_{73}= & {} \{ 0< a< -d, (a-d)^2/4< b< (a^2 - a d + d^2)/3,c=K^-,d< 0 \},\\ c_{74}= & {} \{ 0< a< -d, -a d< b \le (a-d)^2/4, c=K^-,d< 0 \},\\ c_{75}= & {} \{ -d< a< -4 d, a^2/4< b< (a-d)^2/4, c=K^-, d< 0\},\\ c_{76}= & {} \{ d< a< d/2, a^2/4< b< (a^2 - a d + d^2)/3, c=K^-,d< 0 \},\\ c_{77}= & {} \{ 2 d< a< d, a^2/4< b< (a^2 - a d + d^2)/3,c=K^-, d< 0 \},\\ c_{78}= & {} \{ d/2< a \le 0, a^2/4< b \le (a-d)^2/4, c=K^-, d< 0 \},\\ c_{79}= & {} \{ d/2< a \le 0, (a-d)^2/4< b< (a^2 - a d + d^2)/3, c=K^-, d< 0 \},\\ c_{80}= & {} \{ 0< a< -d, (a-d)^2/4< b< (a^2 - a d + d^2)/3,c=K^+,d< 0 \},\\ c_{81}= & {} \{ d< a< d/2, a^2/4< b< (a^2 - a d + d^2)/3, c=K^+,d< 0 \},\\ c_{82}= & {} \{ d< a< d/2, (a-d)^2/4< b \le a^2/4, c=K^+, d< 0 \},\\ c_{83}= & {} \{ 2 d< a< d, a^2/4< b< (a^2 - a d + d^2)/3,c=K^+, d< 0 \},\\ c_{84}= & {} \{ 2 d< a< d, d(a-d)< b \le a^2/4,c=K^+,d< 0 \},\\ c_{85}= & {} \{ d/2< a \le 0, (a-d)^2/4< b< (a^2 - a d + d^2)/3, c=K^+, d < 0 \}. \end{aligned}$$

The conditions in order that the local chart \(U_1\) has either no infinite singular points or all the infinite singular points in the local chart \(U_1\) are formed by two degenerated hyperbolic sectors are the following:

$$\begin{aligned} i_1= & {} \{c=0, b=d\},\\ i_2= & {} \{c=0,b>d\},\\ i_3= & {} \{c\ne 0,b^2-4 c-2 b d+d^2<0\},\\ i_4= & {} \{c\ne 0, b> d,0 < c \le (b-d)^2/4\},\\ i_5= & {} \{c\ne 0,a=1,b=-d,c=d^2,d>1/8\}. \end{aligned}$$

The conditions in order that the origin of the local chart \(U_2\) is either not a singular point or it is formed by two degenerated hyperbolic sectors are:

$$\begin{aligned} j_1= & {} \{c\ne 0\},\\ j_2= & {} \{c=0, a^2-4b<0, b>d\},\\ j_3= & {} \{c=0,a^2-4b<0,b=d,d>0\},\\ j_4= & {} \{c=0,a=b=0,d<0\}. \end{aligned}$$

The sets \(ij_i\) for \(i=1,\dots ,6\) are:

$$\begin{aligned} ij_1= & {} \{b>a^2/4,b=d,c=0\},\\ ij_2= & {} \{a=0,b=0,c=0,d<0\},\\ ij_3= & {} \{b>a^2/4,c=0,d<b\},\\ ij_4= & {} \{a=1,b=-d,c=d^2,d>1/8\},\\ ij_5= & {} \{b>d,0<c\le (b-d)^2/4\},\\ ij_6= & {} \{c> (b-d)^2/4\}. \end{aligned}$$

The sets \(d_i\) in Theorem 1 are:

$$\begin{aligned} d_{1}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{3}}\cap {ij_{1}}\}\ni \left( 0,1,0,1\right) ,\\ d_{2}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{1}}\cap {ij_{2}}\}\ni \left( 0,0,0,-1\right) ,\\ d_{3}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{3}}\cap {ij_{3}}\}\ni \left( 0, 1, 0, 1/2\right) ,\\ d_{4}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{7}}\cap {ij_{4}}\}\ni \left( 1, -1, 1, 1\right) ,\\ d_{5}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{6}}\cap {ij_{5}}\}\ni \left( 2,4,8,-2\right) ,\\ d_{6}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{7}}\cap {ij_{5}}\}\ni \left( 1/2,1/8,1/32,-1/4\right) ,\\ d_{7}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{8}}\cap {ij_{5}}\}\ni \left( 0,3/2,3,-2\right) ,\\ d_{8}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{10}}\cap {ij_{5}}\}\ni \left( 2,17/8,17/8,-1\right) ,\\ d_{9}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{11}}\cap {ij_{5}}\}\ni \left( 1/2,3,15,-5\right) ,\\ d_{10}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{12}}\cap {ij_{5}}\}\ni \left( -1,5/2,25/2,-5\right) ,\\ d_{11}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{13}}\cap {ij_{5}}\}\ni \left( 1,1/2,1/2,-1\right) ,\\ d_{12}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{14}}\cap {ij_{5}}\}\ni \left( -3,17/8,161/512,1\right) ,\\ d_{13}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{15}}\cap {ij_{5}}\}\ni \left( -2333/8,137,280725/8,-269\right) ,\\ d_{14}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{16}}\cap {ij_{5}}\}\ni \left( 1/2,1/32,1/8192,0\right) ,\\ d_{15}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{17}}\cap {ij_{5}}\}\ni \left( 1/2,133/2048,27/32768,0\right) ,\\ d_{16}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{18}}\cap {ij_{5}}\}\ni \left( 3/2,1/4,5/16,-1\right) ,\\ d_{17}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{19}}\cap {ij_{5}}\}\ni \left( 7/4,-1/2,1/32,-1\right) ,\\ d_{18}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{20}}\cap {ij_{5}}\}\ni \left( 7/4,245/128,985/512,-1\right) ,\\ d_{19}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{21}}\cap {ij_{5}}\}\ni \left( 3/2,49/32,6273/4096,-1\right) ,\\ d_{20}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{22}}\cap {ij_{5}}\}\ni \left( 13/4,39/16,1/256,1\right) ,\\ d_{21}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{23}}\cap {ij_{5}}\}\ni \left( 13/4,173/64,45/1024,1\right) ,\\ d_{22}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{24}}\cap {ij_{5}}\}\ni \left( -27/32,3/1024,9/2048,-1\right) ,\\ d_{23}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{25}}\cap {ij_{5}}\}\ni \left( -1/2,-1/4,3/512,-1\right) ,\\ d_{24}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{26}}\cap {ij_{5}}\}\ni \left( 4,1/2,1/4,-1\right) ,\\ d_{25}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{27}}\cap {ij_{5}}\}\ni \left( 4,37/8,3,-1\right) ,\\ d_{26}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{28}}\cap {ij_{5}}\}\ni \left( 5,3,29/2,-5\right) ,\\ d_{27}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{29}}\cap {ij_{5}}\}\ni \left( 1,11/32,11/64,-1\right) ,\\ d_{28}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{30}}\cap {ij_{5}}\}\ni \left( -1/2,1/32,1/64,-1\right) ,\\ d_{29}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{31}}\cap {ij_{5}}\}\ni \left( -1/2,13/128,5/128,-1\right) ,\\ \end{aligned}$$
$$\begin{aligned} d_{30}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{32}}\cap {ij_{5}}\}\ni \left( -4,2,1/8,-4\right) ,\\ d_{31}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{33}}\cap {ij_{5}}\}\ni \left( -4,37/8,23/16,-4\right) ,\\ d_{32}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{34}}\cap {ij_{5}}\}\ni \left( 5,1/2,1/4,-1\right) ,\\ d_{33}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{35}}\cap {ij_{5}}\}\ni \left( 8,18,14,-1\right) ,\\ d_{34}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{36}}\cap {ij_{5}}\}\ni \left( 5/2,1,5/2,-3\right) ,\\ d_{35}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{37}}\cap {ij_{5}}\}\ni \left( 1/8,1/4,511/512,-4\right) ,\\ d_{36}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{38}}\cap {ij_{5}}\}\ni \left( 5/32,39/8,73/4,-4\right) ,\\ d_{37}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{39}}\cap {ij_{5}}\}\ni \left( 1/8,9/4,569/64,-4\right) ,\\ d_{38}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{40}}\cap {ij_{5}}\}\ni \left( 5/4,1/4,1/8,-1\right) ,\\ d_{39}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{41}}\cap {ij_{5}}\}\ni \left( -12,7/2,59,-17\right) ,\\ d_{40}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{42}}\cap {ij_{5}}\}\ni \left( -9,21/2,220,-21\right) ,\\ d_{41}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{43}}\cap {ij_{5}}\}\ni \left( -16,53,648,-29\right) ,\\ d_{42}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{44}}\cap {ij_{5}}\}\ni \left( -4,7/2,1/64,-3\right) ,\\ d_{43}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{45}}\cap {ij_{5}}\}\ni \left( 3/2,25/32,19/32,-1\right) ,\\ d_{44}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{46}}\cap {ij_{5}}\}\ni \left( -3/4,13/64,45/1024,-1\right) ,\\ d_{45}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{47}}\cap {ij_{5}}\}\ni \left( -4,17/4,45/128,-13/4\right) ,\\ d_{46}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{48}}\cap {ij_{5}}\}\ni \left( -1/4,5/64,17/256,-1\right) ,\\ d_{47}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{49}}\cap {ij_{5}}\}\ni \left( -1/4,13/64,163/1024,-1\right) ,\\ d_{48}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{50}}\cap {ij_{5}}\}\ni \left( 2,7/3,64/27,-1\right) ,\\ d_{49}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{51}}\cap {ij_{5}}\}\ni \left( 3,7/3,1/27,1\right) ,\\ d_{50}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{52}}\cap {ij_{5}}\}\ni \left( -2,4/3,8/27,-2\right) ,\\ d_{51}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{53}}\cap {ij_{5}}\}\\{} & {} \ni \left( 1/2,133/2048,\left( 2768-113 \sqrt{226}\right) /1769472,0\right) ,\\ d_{52}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{54}}\cap {ij_{5}}\}\\{} & {} \ni \left( 35/32,3/32,\left( -27755+937 \sqrt{937}\right) /442368,0\right) ,\\ d_{53}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{55}}\cap {ij_{5}}\}\ni \left( 81/64,57/128,49/1024,0\right) ,\\ d_{54}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{56}}\cap {ij_{5}}\}\ni \left( 7/4,245/128,\left( 1970-\sqrt{2}\right) /1024,-1\right) ,\\ d_{55}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{57}}\cap {ij_{5}}\}\ni \left( 4,133/32,\left( 616-17 \sqrt{34}\right) /3456,1\right) ,\\ d_{56}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{58}}\cap {ij_{5}}\}\ni \left( 7/4,25/16,\left( 95+4 \sqrt{2}\right) /64,-1\right) ,\\ d_{57}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{59}}\cap {ij_{5}}\}\ni \left( 7/4,245/128,\left( 1970+\sqrt{2}\right) /1024,-1\right) ,\\ d_{58}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{60}}\cap {ij_{5}}\}\ni \left( 7/4,29/16,\left( 1035+4 \sqrt{6}\right) /576,-1\right) ,\\ \end{aligned}$$
$$\begin{aligned}d_{59}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{61}}\cap {ij_{5}}\}\ni \left( 4,133/32,\left( 616+17 \sqrt{34}\right) /3456,1\right) ,\\ d_{60}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{62}}\cap {ij_{5}}\}\ni \left( 4,7/2,\left( -14+5 \sqrt{10}\right) /54,1\right) ,\\ d_{61}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{63}}\cap {ij_{5}}\}\ni \left( -3/4,-1/8,\left( -80+19 \sqrt{19}\right) /864,-1\right) ,\\ d_{62}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{64}}\cap {ij_{5}}\}\ni \left( 4,5,\left( 36-4 \sqrt{6}\right) /9,-1\right) ,\\ d_{63}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{65}}\cap {ij_{5}}\}\ni \left( 1/4,5/128,\left( 10-\sqrt{2}\right) /1024,-1/4\right) ,\\ d_{64}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{66}}\cap {ij_{5}}\}\ni \left( -16,160,2560-256 \sqrt{2},-32\right) ,\\ d_{65}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{67}}\cap {ij_{5}}\}\ni \left( -16,160,2560+256 \sqrt{2},-32\right) ,\\ d_{66}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{68}}\cap {ij_{5}}\}\ni \left( -1,37/128,\left( 616-17 \sqrt{34}\right) /27648,-1\right) ,\\ d_{67}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{69}}\cap {ij_{5}}\}\ni \left( -1,37/128,\left( 616+17 \sqrt{34}\right) /27648,-1\right) ,\\ d_{68}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{70}}\cap {ij_{5}}\}\ni \left( -1,1/8, \left( -14+5 \sqrt{10}\right) /432,-1\right) ,\\ d_{69}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{71}}\cap {ij_{5}}\}\ni \left( 8,18,\left( 430-38 \sqrt{19}\right) /27,-1\right) ,\\ d_{70}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{72}}\cap {ij_{5}}\}\ni \left( 1/8,1/8,\left( 1881-83 \sqrt{249}\right) /2304,-2\right) ,\\ d_{71}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{73}}\cap {ij_{5}}\}\\{} & {} \ni \left( 5/32,39/8,\left( 2692737-691 \sqrt{2073}\right) /147456,-4\right) ,\\ d_{72}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{74}}\cap {ij_{5}}\}\ni \left( 1/8,9/4,1125/128,-4\right) ,\\ d_{73}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{75}}\cap {ij_{5}}\}\ni \left( 7/4,17/16,\left( 495-28 \sqrt{42}\right) /576,-1\right) ,\\ d_{74}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{76}}\cap {ij_{5}}\}\ni \left( -16,118,1080-108 \sqrt{2},-26\right) ,\\ d_{75}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{77}}\cap {ij_{5}}\}\ni \left( -4,17/4,\left( 305-13 \sqrt{13}\right) /864,-13/4\right) ,\\ d_{76}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{78}}\cap {ij_{5}}\}\ni \left( -1/4,5/64,\left( 595-37 \sqrt{37}\right) /6912,-1\right) ,\\ d_{77}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{79}}\cap {ij_{5}}\}\ni \left( -1/4,13/64,\left( 1099-13 \sqrt{13}\right) /6912,-1\right) ,\\ d_{78}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{80}}\cap {ij_{5}}\}\\{} & {} \ni \left( 7/32,51/128,\left( 171181+73 \sqrt{73}\right) /442368,-1\right) ,\\ d_{79}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{81}}\cap {ij_{5}}\}\ni \left( -16,118,1080+108 \sqrt{2},-26\right) ,\\ d_{80}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{82}}\cap {ij_{5}}\}\ni \left( -3/4,5/64,\left( -55+37 \sqrt{37}\right) /6912,-1\right) ,\\ d_{81}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{83}}\cap {ij_{5}}\}\ni \left( -4,17/4, \left( 305+13 \sqrt{13}\right) /864,-13/4\right) ,\\ d_{82}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{84}}\cap {ij_{5}}\}\ni \left( -4,7/2, \left( -14+5 \sqrt{10}\right) /54,-3\right) ,\\ d_{83}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{85}}\cap {ij_{5}}\}\ni \left( -1/4,13/64,\left( 1099+13 \sqrt{13}\right) /6912,-1\right) ,\\ \end{aligned}$$
$$\begin{aligned} d_{84}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{14}}\cap {ij_{6}}\}\ni \left( -5,-70,1280,1\right) ,\\ d_{85}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{16}}\cap {ij_{6}}\}\ni \left( 1/2,1/32,13/32768,0\right) ,\\ d_{86}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{17}}\cap {ij_{6}}\}\ni \left( 1/2,133/2048,15/8192,0\right) ,\\ d_{87}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{18}}\cap {ij_{6}}\}\ni \left( 3/2,1/4,1/2,-1\right) ,\\ d_{88}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{19}}\cap {ij_{6}}\}\ni \left( 7/4,-21/16,11/128,-1\right) ,\\ d_{89}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{20}}\cap {ij_{6}}\}\ni \left( 1,53831/65536,87485/131072,-13/16\right) ,\\ d_{90}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{21}}\cap {ij_{6}}\}\ni \left( 1,209/256,347783/524288,-13/16\right) ,\\ d_{91}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{22}}\cap {ij_{6}}\}\ni \left( 5/16,19/2048,1/65536,3/256\right) ,\\ d_{92}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{23}}\cap {ij_{6}}\}\ni \left( 5/16,805/32768,1/4096,3/256\right) ,\\ d_{93}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{24}}\cap {ij_{6}}\}\ni \left( 29/64,7/512,1055/4096,-1\right) ,\\ d_{94}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{25}}\cap {ij_{6}}\}\ni \left( 7/32,-67/64,1/512,-1\right) ,\\ d_{95}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{50}}\cap {ij_{6}}\}\ni \left( 1/2,7/64,1/64,-1/8\right) ,\\ d_{96}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{51}}\cap {ij_{6}}\}\ni \left( 1/2,19/256,1/512,1/16\right) ,\\ d_{97}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{53}}\cap {ij_{6}}\}\ni \left( 1/2,39/512,(760-11 \sqrt{22})/221184,0\right) ,\\ d_{98}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{54}}\cap {ij_{6}}\}\ni \left( 1/2,1/32,(-14+5 \sqrt{10})/3456,0\right) ,\\ d_{99}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{55}}\cap {ij_{6}}\}\\{} & {} \ni \left( 1/2,133/2048,(2768+113 \sqrt{226})/1769472,0\right) ,\\ d_{100}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{56}}\cap {ij_{6}}\}\\{} & {} \ni \left( 1,1685/2048,(43820-\sqrt{2})/65536,-13/16\right) ,\\ d_{101}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{57}}\cap {ij_{6}}\}\ni \left( 1,37/128,121/8192,3/32\right) ,\\ d_{102}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{58}}\cap {ij_{6}}\}\ni \left( 8,0, (-1280+896 \sqrt{7})/27,-4\right) ,\\ d_{103}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{59}}\cap {ij_{6}}\}\\{} & {} \ni \left( 5/32,589/65536,(148715+217 \sqrt{217})/536870912,-25/1024\right) ,\\ d_{104}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{60}}\cap {ij_{6}}\}\\{} & {} \ni \left( 1/8,75/16384,(7652195+15577 \sqrt{15577})/115964116992,-27/2048\right) ,\\ d_{105}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{61}}\cap {ij_{6}}\}\\{} & {} \ni \left( 5/16,805/32768,(53983+1339 \sqrt{1339})/226492416,3/256\right) ,\\ d_{106}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{62}}\cap {ij_{6}}\}\\{} & {} \ni \left( 5/16,1/64,(-141155+3097 \sqrt{3097})/226492416,3/256\right) ,\\ d_{107}= & {} \{(a,b,c,d)\in \mathbb {R}^{4}\,:\,\mathrm {c_{63}}\cap {ij_{6}}\}\ni \left( -9/2,0,(-575+193 \sqrt{193})/108,-8\right) . \end{aligned}$$

Appendix B Conditions in Theorem 2

The conditions in order that the origin is the unique finite singular point are:

$$\begin{aligned} C_1= & {} \{b \ge 0, c \le 0\}, \\ C_2= & {} \left\{ b \ge 0, c>0,a>\frac{c-4 b}{4 c}\right\} . \end{aligned}$$

The conditions in order that the local chart \(U_1\) has either no infinite singular points or all the infinite singular points in the local chart \(U_1\) are formed by two degenerated hyperbolic sectors are the following:

$$\begin{aligned} I_1= & {} \{b=0,a=c\},\\ I_2= & {} \{b=0,a>c\},\\ I_3= & {} \{b\ne 0, b>(a-c)^2/4 \},\\ I_4= & {} \{b\ne 0, a>c, 0<b \le (a-c)^2/4 \}. \end{aligned}$$

The conditions in order that the origin of the local chart \(U_2\) is either not a singular point or it is formed by two degenerated hyperbolic sectors are:

$$\begin{aligned} J_1= & {} \{b\ne 0\},\\ J_2= & {} \{b= 0,a>1/4,a>c\},\\ J_3= & {} \{b=0,a=c>1/4\}. \end{aligned}$$

The sets \(IJ_i\) for \(i=1,\dots 5\) are:

$$\begin{aligned} IJ_1= & {} \{ b> (a-c)^2/4\},\\ IJ_2= & {} \{b>0, a> c\},\\ IJ_3= & {} \{b = 0,a=c> 1/4\},\\ IJ_4= & {} \{b = 0, a> 1/4, c \le 1/4\},\\ IJ_5= & {} \{b = 0, a> c > 1/4\}. \end{aligned}$$

The conditions in Theorem 2 are:

$$\begin{aligned} e_{1}= & {} \{(a,b,c)\in \mathbb {R}^3\,:\,\mathrm {C_1}\cap IJ_1\}\ni \left( 0,2,-1\right) ,\\ e_{2}= & {} \{(a,b,c)\in \mathbb {R}^3\,:\,\mathrm {C_1}\cap IJ_2\}\ni \left( 0,1,-1\right) ,\\ e_{3}= & {} \{(a,b,c)\in \mathbb {R}^3\,:\,\mathrm {C_1}\cap IJ_4\}\ni \left( 5/4,0,0\right) ,\\ e_{4}= & {} \{(a,b,c)\in \mathbb {R}^3\,:\,\mathrm {C_2}\cap IJ_1\}\ni \left( 0,2,1\right) ,\\ e_{5}= & {} \{(a,b,c)\in \mathbb {R}^3\,:\,\mathrm {C_2}\cap IJ_2\}\ni \left( 2,1,1\right) ,\\ e_{6}= & {} \{(a,b,c)\in \mathbb {R}^3\,:\,\mathrm {C_2}\cap IJ_3\}\ni \left( 1,0,1\right) ,\\ e_{7}= & {} \{(a,b,c)\in \mathbb {R}^3\,:\,\mathrm {C_2}\cap IJ_4\}\ni \left( 1,0,1/8\right) ,\\ e_{8}= & {} \{(a,b,c)\in \mathbb {R}^3\,:\,\mathrm {C_2}\cap IJ_5\}\ni \left( 2,0,1\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbera, M., Valls, C. Global Nilpotent Reversible Centers with Cubic Nonlinearities Symmetric with Respect to the x-Axis. Results Math 79, 129 (2024). https://doi.org/10.1007/s00025-024-02163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-024-02163-x

Keywords

Mathematics Subject Classification

Navigation