Log in

Seismic Site Response Studies for the Indo-Gangetic Plains of India with Special Emphasis on the Narora Nuclear Power Plant

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Indo-Gangetic Plains (IGP), India, is one of the most seismically vulnerable regions due to its proximity to the Himalayan earthquakes. In this study, an attempt has been made to estimate seismic site response analysis around the Narora Nuclear Power Plant (NNPP) located in the central part of the IGP. A non-linear approach has been used for site response analysis with simulated accelerograms as input motion at three different competent bedrock types: weathered rock, unweathered rock, and hard rock at depths of 30 m, 80 m, and 175 m, respectively. The 1999 Chamoli earthquake of magnitude (Mw) 6.6 is used as a possible source in the Himalayan region that may affect the NNPP site in the future. The results show that at the NNPP site amplification (FPGA, FPSA) and site factors (FA and FV) vary in the range of 2.19–4.77, 2.20–5.12, 2.42–4.36, and 1.34–2.5, respectively, for 30 m to 175 m depth. The relative percentage changes in the amplification and site factors at the surface have been studied when the input motion bedrock depth changes from 30 to 175 m. We observed maximum amplification at NNPP sites for a frequency range of 2–5 Hz. The site predominant frequency maps have been prepared for the study region and these frequencies are in the same range of fundamental frequency of existing civil structures. There is a slow amplification of PGA values from 175 to 30 m but there is a sharp increase in the PGA values for shallow depth less than 30 m. The estimated seismic site response in the IGP will be helpful to assess damage for existing and upcoming structures due to future earthquakes from the Himalayan central seismic gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

Data can be available on request to the authors.

References

  • Aki, K. (1988). Local site effect on ground motion. In Proceedings of the Earthq Energy Soil Dyn p. II (pp. 103–155). https://ci.nii.ac.jp/naid/10011125267

  • Anbazhagan, P., Joo, M. R., Rashid, M. M., & Al-Arifi, N. S. N. (2021). Prediction of different depth amplifications of deep soil sites for potential scenario earthquakes. Natural Hazards, 107(2), 1935–1963. https://doi.org/10.1007/s11069-021-04670-4

    Article  Google Scholar 

  • Anbazhagan, P., Kumar, A., & Sitharam, T. G. (2010). Site response study of deep soil column in Lucknow, India. In Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, May 24–29, San Diego.

  • Anbazhagan, P., Kumar, A., & Sitharam, T. G. (2011, March). Amplification factor from intensity map and site response analysis for the soil sites during 1999 Chamoli earthquake. In Proceedings of the 3rd Indian young geotechnical engineers conference, New Delhi (pp. 311–316).

  • Anbazhagan, P., & Sitharam, T. G. (2008). Site characterization and site response studies using shear wave velocity. Journal of Seismology and Earthquake Engineering, 10(2), 53–67.

    Google Scholar 

  • Anderson, J. G., Bodin, P., Brune, J. N., Prince, J., Singh, S. K., Quaas, R., & Onate, M. (1986). Strong ground motion from the Michoacan, Mexico, earthquake. Science, 233(4768), 1043–1049.

    Article  Google Scholar 

  • Andrews, A., & Folger, P. (2012). Nuclear power plant design and seismic safety considerations, Congressional Research Service Prepared for Members and Committees of Congress.

  • Aquifer map** and ground water management plan. (2012–2017). parts of NCR, Uttar Pradesh central ground water board ministry of water resources, river development and Ganga rejuvenation government of India. http://cgwb.gov.in/AQM/UP%20Reportdistrict.html (10–1–2022).

  • Atakan, K., A.-M. Duval, N. Theodulidis, B. Guillier, J.-L. Chatelain, and P.-Y. Bard The SESAME-team (2004b). The H/V spectral ratio technique: Experimental conditions, data processing and empirical reliability assessment In: Proceedings of the 13th World conference on earthquake engineering, Vancouver, Canada, 1–6 August.

  • Atkinson, G. M. (2014). Karen Assatourians; implementation and validation of EXSIM (A stochastic finite-fault ground-motion simulation algorithm) on the SCEC broadband platform. Seismological Research Letters, 86(1), 48–60. https://doi.org/10.1785/0220140097

    Article  Google Scholar 

  • Atkinson, G. M., Goda, K., & Assatourians, K. (2011). Comparison of nonlinear structural responses for accelerograms simulated from the stochastic finite-fault approach versus the hybrid broadband approach. Bulletin of the Seismological Society of America, 101(6), 2967–2980. https://doi.org/10.1785/0120100308

    Article  Google Scholar 

  • Bagchi, S., & Raghukanth, S. T. G. (2019). Seismic response of the central part of Indo-Gangetic plain. Journal of Earthquake Engineering, 23(2), 183–207. https://doi.org/10.1080/13632469.2017.1323044

    Article  Google Scholar 

  • Bajaj, K., & Anbazhagan, P. (2019a). Comprehensive amplifcation estimation of the Indo-Gangetic Basin deep soil sites in seismically active. Soil Dynamics and Earthquake Engineering, 127, 105855. https://doi.org/10.1016/j.soildyn.2019.105855

    Article  Google Scholar 

  • Bajaj, K., & Anbazhagan, P. (2019b). Seismic site classifcation and correlation between vs and SPT-N for deep soil sites in Indo-Gangetic Basin. Journal of Applied Geophysics, 163, 55–72. https://doi.org/10.1016/j.jappgeo.2019.02.011

    Article  Google Scholar 

  • Bard, P. Y., Acerra, C, Aguacil, G., Anastasiadis, A., Atakan, K., Azzara, R. et al. (2008). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. Bulletin of Earthquake Engineering, 6(4), 1–2.

    Article  Google Scholar 

  • Beresnev, I. A., & Atkinson, G. M. (1998a). FINSIM–a FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seismological Research Letters, 69, 27–32.

    Article  Google Scholar 

  • Beresnev, I. A., & Atkinson, G. M. (1998b). Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earthquake. I. Validation on rock sites. Bulletin of the Seismological Society of America, 88, 1392–1401.

    Google Scholar 

  • Beresnev, I. A., & Atkinson, G. M. (2002). Source parameters of earthquakes in eastern and western North America based on finite-fault modeling. Bulletin of the Seismological Society of America, 92(2), 695–710. https://doi.org/10.1785/0120010101

    Article  Google Scholar 

  • Bilham, R. (1995). Location and magnitude of the 1833 Nepal earthquake and its relation to the rupture zones of contiguous great Himalayan earthquakes. Current Science, 69(2), 101–128.

    Google Scholar 

  • Bilham, R. (2019). Himalayan earthquakes: A review of historical seismicity and early 21st century slip potential. Geological Society, Special Publications, SP483.16–. https://doi.org/10.1144/SP483.16.

  • Bilham, R., Gaur, V. K., & Molnar, P. (2001). Earthquakes: Himalayan seismic hazard. Science, 293(5534), 1442–1444. https://doi.org/10.1126/science.1062584

    Article  Google Scholar 

  • Bonsor, H. C., MacDonald, A. M., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., Dixit, A., Foster, S. S. D., Gopal, K., Lapworth, D. J., Moench, M., Mukherjee, A., Rao, M. S., Shamsudduha, M., Smith, L., Taylor, R. G., Tucker, J., van Steenbergen, F., Yadav, S. K., & Zahid, A. (2017). Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrogeology Journal, 25(5), 1377–1406. https://doi.org/10.1007/s10040-017-1550-z

    Article  Google Scholar 

  • Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73, 1865–1894.

    Google Scholar 

  • Boore, D. M. (2003). Some notes on phase derivatives and simulating strong ground motions. Bulletin of the Seismological Society of America, 93, 1132–1143.

    Article  Google Scholar 

  • Boore, D. M. (2005). SMSIM—FORTRAN programs for simulating ground motions from earthquakes version 2.3--A Revision of OFR 96–80-A. United States Geological Survey -File Report.

  • Boore, D. M. (2009). Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM. Bulletin of the Seismological Society of America, 99(6), 3202–3216. https://doi.org/10.1785/0120090056

    Article  Google Scholar 

  • Borcherdt, R. D. (1970). Efects of local geology on ground motion near san francisco rbay. Bulletin of the Seismological Society of America, 60(1), 29–61.

    Google Scholar 

  • Borcherdt, R. D. (1994). Estimates of site-dependent response spectra for design (methodology and justifcation). Earthquake Spectra, 10(4), 617–653. https://doi.org/10.1193/1.1585791

    Article  Google Scholar 

  • Bray, J. D., & Rodriguez-Marek, A. (1997). Geotechnical site categories. In Proceedings First PEERPG&E workshop on seismic reliability of utility lifelines, San Francisco

  • Chávez-García, F. J., Monsalve Jaramillo, H., Gómez Cano, M., & Vila Ortega, J. J. (2018). Vulnerability and site effects in earthquake disasters in Armenia (Colombia). I—Site effects. Geosciences, 8(7), 254. https://doi.org/10.3390/geosciences8070254

    Article  Google Scholar 

  • Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material dam** curves [PhD Dissertation]. University of Texas at Austin.

  • Dejphumee, S., & Sasanakul, I. (2021). Evaluation of uncertainties in site response analysis of deep soil profiles in South Carolina coastal plain. Bulletin of the Seismological Society of America, 111(4), 1974–1988. https://doi.org/10.1785/0120200303

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1994). Efect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters, 21(20), 2191–2194. https://doi.org/10.1029/94GL02118

    Article  Google Scholar 

  • Dewey, J. F., & Bird, J. M. (1970). Mountain belts and the new global tectonics. Journal of Geophysical Research, 75(14), 2625–2647. https://doi.org/10.1029/JB075i014p02625

    Article  Google Scholar 

  • Dravinski, M., Ding, G., & Wen, K. L. (1996). Wen analysis of spectral ratios for estimating ground motion in Deep Basins. Bulletin of the Seismological Society of America, 86(3), 6464554.

    Article  Google Scholar 

  • Du, W., & Pan, T. (2016). Site response analyses using downhole arrays at various seismic hazard levels of Singapore. Soil Dynamics and Earthquake Engineering, 90, 169–182. https://doi.org/10.1016/j.soildyn.2016.08.033

    Article  Google Scholar 

  • Fan, W., & Shearer, P. M. (2015). Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves. Geophysical Research Letters, 42(14), 5744–5752.

    Article  Google Scholar 

  • Field, E. H., Johnson, P. A., Beresnev, I. A., & Zeng, Y. (1997). Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake. Nature, 390(6660), 599–602. https://doi.org/10.1038/37586

    Article  Google Scholar 

  • Gahalaut, V. K., & Chander, R. (1997). On interseismic elevation changes and strain accumulation for great thrust earthquakes in the Nepal Himalaya. Geophysical Research Letters, 24(9), 1011–1014. https://doi.org/10.1029/97GL00810

    Article  Google Scholar 

  • Gansser, A. (1974). Data for erogenic studies: Himalaya. In A. M. Spencer (Ed.), Mesozoic-Cenozoic orogenic belts (pp. 267–278). Geological Society.

    Google Scholar 

  • GSI. (2000). Seismotectonic Atlas of India and its environs. Geological Survey of India. Seisat, 1–43, 1–86.

    Google Scholar 

  • Gupta, I. D. (2006). Delineation of probable seismic sources in India and neighbourhood by a comprehensive analysis of seismotectonic characteristics of the region. Soil Dynamics and Earthquake Engineering, 26(8), 766–790, ISSN 0267-7261. https://doi.org/10.1016/j.soildyn.2005.12.007

  • Gupta, S. C., & Kumar, A. (2002). Seismic wave attenuation characteristics of three Indian regions: A comparative study. Current Science, 82, 407–413.

    Google Scholar 

  • Gupta, S. C., Singh, V. N., & Kumar, A. (1995). Attenuation of codawaves, in the Garhwal Himalaya, India. Physics of the Earth and Planetary Interiors, 87(3–4), 247–253. https://doi.org/10.1016/0031-9201(94)02968-H

    Article  Google Scholar 

  • Hashash, Y. M., Groholski, D. R., Phillips, C. A., Park, D., & Musgrove, M. (2011). DEEPSOIL 5.0, user Manual and Tutorial. University of Illinois, Urbana.

  • Hashash, Y. M., Hook, J. J., Schmidt, B., John, I., & Yao, C. (2001). Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16(4), 247–293.

    Article  Google Scholar 

  • Hashash, Y. M. A., Musgrove, M. I., Harmon, J. A., Ilhan, O., Groholski, D. R., Phillips, C. A., & Park, D. (2017). DEEPSOIL 7.0, user manual.

  • Hashash, Y. M. A., & Park, D. (2001). Non-linear one-dimensional seismic ground motion propagation in the Mississippi embayment. Engineering Geology, 62(1–3), 185–206. https://doi.org/10.1016/S0013-7952(01)00061-8

    Article  Google Scholar 

  • Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-Filled Seamless SRTM Data V4. International Center for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org.

  • Joshi, A. (2006a). Analysis of strong motion data of the Uttarkashi earthquake of 20th October 1991 and the Chamoli earthquake of 28th March 1999 for determining the mid crustal Q value and source parameters. Journal of Earthquake Technology, 43, 11–29.

    Google Scholar 

  • Joshi, A. (2006b). Use of acceleration spectra for determining the frequency dependent attenuation coefficient and source parameters. Bulletin of the Seismological Society of America, 96(6), 2165–2180. https://doi.org/10.1785/0120050095

    Article  Google Scholar 

  • Kaklamanos, J., Cabas, A., Parolai, S., & Guéguen, P. (2021). Introduction to the special section on advances in site response estimation. Bulletin of the Seismological Society of America, 111(4), 1665–1676. https://doi.org/10.1785/0120210152

    Article  Google Scholar 

  • Keshri, C. K., Mohanty, W. K., & Ranjan, P. (2020). Probabilistic seismic hazard assessment for some parts of the Indo-Gangetic plains, India. Natural Hazards, 103(1), 815–843. https://doi.org/10.1007/s11069-020-04014-8

    Article  Google Scholar 

  • Khattri, K. N. (1999). An evaluation of earthquakes hazard and risk in northern India. Himalayan Geology, 20(1), 1–46.

    Google Scholar 

  • Khattri, K. M., & Tyagi, A. K. (1983). Seismicity patterns in the Himalayan plate boundary and identifcation of the areas of high seismic potential. Tectonophysics, 96(3–4), 281–297. https://doi.org/10.1016/0040-1951(83)90222-6

    Article  Google Scholar 

  • Kramer, S. L. (1996). Geotechnical earthquake engineering, 80. Prentice Hall.

    Google Scholar 

  • Kumar, V., Chopra, S., Choudhury, P., & Kumar, D. (2020). Estimation of near surface attenuation parameter kappa (κ) in Northwest and Northeast Himalaya region. Soil Dynamics and Earthquake Engineering. https://doi.org/10.1016/j.soildyn.2020.106237

    Article  Google Scholar 

  • Kumar, S. S., & Dey, A. (2015, January). 1D ground response analysis to identify liquefiable substrata: case study from Guwahati city. In Ukieri workshop on seismic requalification of pile supported structures (SRPSS) (pp. 7–9).

  • Lermo, J., & Chávez-García, F. J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83(5), 1574–1594. https://doi.org/10.1785/BSSA0830051574

    Article  Google Scholar 

  • Lindeburg, M. (2001). Civil Engineering Reference Manual, Eighth Edition. Professional Publications, Inc.

  • Luke, B. L., & Liu, Y. (2007). Effect of sediment column on weak-motion site response for a Deep Basin fill. Journal of Geotechnical and Geoenvironmental Engineering, 133(11), 1399–1413. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1399)

    Article  Google Scholar 

  • Motazedian, D., & Atkinson, G. (2005). Stochastic finite fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 95(3), 995–1010. https://doi.org/10.1785/0120030207

    Article  Google Scholar 

  • NAVFAC Design Manuals DM 7.01 (1986), Department of the Navy, Naval Facilities Engineering Command, Alexandria.

  • Ni, J. B. M., & Barazangi, M. (1985). Active tectonics of the western Tethyan Himalaya above the underthrusting Indian plate: The upper Sutlej River basin as a pull-apart structure. Tectonophysics, 112(1–4), 277–295. https://doi.org/10.1016/0040-1951(85)90183-0

    Article  Google Scholar 

  • Pal, D. K., Bhattacharyya, T., Srivastava, P., Chandran, P., & SK. (2009). Ray Soils of the Indo-Gangetic Plains: Their historical perspective and management. Current Science, 96(9), 10.

    Google Scholar 

  • Pandey, Y., Dharmaraju, R., & Chauhan, P. K. S. (2001). Estimation of source parameters of Chamoli Earthquake, India. Journal of Earth System Science, 110(2), 171–177.

    Article  Google Scholar 

  • Pavlenko, O., & Irikura, K. (2002). Nonlinearity in the response of soils in the 1995 Kobe earthquake in vertical components of records. Soil Dynamics and Earthquake Engineering, 22(9–12), 967–975. https://doi.org/10.1016/S0267-7261(02)00121-5

    Article  Google Scholar 

  • Phillips, C., & Hashash, Y. M. A. (2009). Dam** formulation for non-linear 1D site response analyses. Soil Dynamics and Earthquake Engineering, 29(7), 1143–1158. https://doi.org/10.1016/j.soildyn.2009.01.004

    Article  Google Scholar 

  • Pudi, R., Joshi, S., Martha, T. R., Upadhyay, R., & Pant, C. C. (2021). A comprehensive site response and site classification of the GarhwalKumaun Himalaya, Central seismic gap (CSG), India. Journal of Earthquake Engineering. https://doi.org/10.1080/13632469.2021.1927901

    Article  Google Scholar 

  • Quittmeyer, R. C., & Jacob, K. H. (1979). Historical and modern seismicity of Pakistan, Afghanistan, North-Western India, and South-Eastern Iran. Bulletin of the Seismological Society of America, 69(3), 773–823.

    Google Scholar 

  • Raghucharan, M. C., & Somala, S. N. (2018). Seismic damage and loss estimation for central Indo-Gangetic Plains, India. Natural Hazards, 94(2), 883–904. https://doi.org/10.1007/s11069-018-3430-9

    Article  Google Scholar 

  • Rajendran, C. P., & Rajendran, K. (2001). Characteristics of deformation and past seismicity associated with the 1819 Kutch earthquake, northwestern India. Bulletin of the Seismological Society of America, 91(3), 407–426.

    Article  Google Scholar 

  • Rajput, S., Gahalaut, V. K., Raju, P. S., & Kayal, J. R. (2005). Rupture parameters of the 1999 Chamoli earthquake in Garhwal Himalaya: Constraints from aftershocks and change in failure stress. Tectonophysics, 404(1–2), 23–32, ISSN 0040–1951. https://doi.org/10.1016/j.tecto.2005.03.016

  • Rathje, E. M., Kottke, A. R., & Trent, W. L. (2010). Infuence of input motion and site property variabilities on seismic site response. Journal of Geotechnical and Geoenvironmental Engineering, 136(4), 607–619. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000255

    Article  Google Scholar 

  • Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void filling interpolation methods for SRTM data. International Journal of Geographic Information Science, 21(9), 983–1008. https://doi.org/10.1080/13658810601169899

    Article  Google Scholar 

  • Roy, N., & Sahu, R. B. (2012). Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata. Geomechanics and Engineering, 4(1), 1–18. https://doi.org/10.12989/gae.2012.4.1.001

    Article  Google Scholar 

  • Şafak, E. (1997). Models and methods to characterize site amplification from a pair of records. Earthquake Spectra, 13(1), 97–129. https://doi.org/10.1193/1.1585934

    Article  Google Scholar 

  • Satyabala, S. P., & Bilham, R. (2006). Surface deformation and subsurface slip of the 28 March 1999 MW = 6.4 west Himalayan Chamoli earthquake from InSAR analysis. Geophysical Research Letters, 33(23), L23305. https://doi.org/10.1029/2006GL027422

    Article  Google Scholar 

  • Seeber, L., & Armbruster, J. G. (1981). Great detachment earthquakes along the Himalayan arc and long-term forecasting. Maurice Ewing Series, 4, 259–277. https://doi.org/10.1029/ME004p0259

    Article  Google Scholar 

  • Seed, R. B., Dickenson, S. E., & Idriss, I. M. (1991). Principal geotechnical aspects of the 1989 Loma Prieta earthquake. Soils and Foundations, 31(1), 1–26.

    Article  Google Scholar 

  • Sharma, A., Yadav, R., Kumar, D., Paul, A., & Teotia, S. S. (2021). Estimation of site response functions for the central seismic gap of Himalaya, India. Natural Hazards, 109(2), 1899–1933. https://doi.org/10.1007/s11069-021-04903-6

    Article  Google Scholar 

  • Sharma, M. L., Wason, H. R., & Dimri, R. (2003). Seismic zonation of the Delhi region for bedrock ground motion. Pure and Applied Geophysics, 160(12), 2381–2398. https://doi.org/10.1007/s00024-003-2400-6

    Article  Google Scholar 

  • Singh, A., Kumar, M. R., & Srinagesh, D. (2013). Near-surface shear velocities in diverse geological segments of India. Bulletin of the Seismological Society of America, 103(1), 317–327. https://doi.org/10.1785/0120120112.

    Article  Google Scholar 

  • Singh, S. K., Mena, E. A., & Castro, R. (1988). Some aspects of source characteristics of the 19 September 1985 Michoacan earthquake and ground motion amplification in and near Mexico City from strong motion data. Bulletin of the Seismological Society of America, 78(2), 451–477.

    Google Scholar 

  • Singh, S. K., Srinagesh, D., Pérez-Campos, X., Srinivas, D., Suresh, G., Suresh, G., & Chadha, R. K. (2020). Seismic wave amplification in the central Indo-Gangetic Plains, India, estimated from the ratio of soft to hard site source spectrum. Journal of Seismology, 24(3), 679–692.

    Article  Google Scholar 

  • Srinagesh, D., Singh, S. K., Chadha, R. K., Paul, A., Suresh, G., Ordaz, M., & Dattatrayam, R. S. (2011). Amplification of seismic waves in the central Indo-gangetic basin, India. Bulletin of the Seismological Society of America, 101(5), 2231–2242. https://doi.org/10.1785/0120100327

    Article  Google Scholar 

  • Tsai, C.-C., Kishida, T., & Lin, W.-C. (2021). Adjustment of site factors for basin effects from site response analysis and deep downhole array measurements in Taipei. Engineering Geology, 285, 106071. https://doi.org/10.1016/j.enggeo.2021.106071

    Article  Google Scholar 

  • Tucker, B., & King, J. (1985). Dependence of sediment-flled valley response on input amplitude and valley properties. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. https://doi.org/10.1016/0148-9062(85)92676-2

    Article  Google Scholar 

  • Valdiya, K. S. (1976). Himalayan transverse faults and folds and their parallelism with subsurface structures of North Indian plains. Tectonophysics, 32(3–4), 353–386. https://doi.org/10.1016/0040-1951(76)90069-X

    Article  Google Scholar 

  • Wald, D. J., Kanamori, H., Helmberger, D. V., & Heaton, T. H. (1993). Source study of the 1906 San Francisco earthquake. Bulletin of the Seismological Society of America, 83(4), 981–1019.

    Article  Google Scholar 

  • Wason, H. R., Sharma, M. L., Khan, P. K., Kapoor, K., Nandini, D., & Kara, V. (1999). Preliminary analysis of broadband seismic data of the Chamoli earthquake of March 29 1999 and its aftershock sequence. In Proceedings of the of the Workshop on Chamoli Earthquake and Its Impact WIHG, Dehradun.

  • Yeats, R. S., & Thakur, V. C. (1998). Reassessment of earthquake hazard based on a fault-bend fold model of the Himalayan plate-boundary fault. Current Science, 74(3), 230–233.

    Google Scholar 

  • Zhao, W., Nelson, K. D., Che, J., Quo, J., Lu, D., Wu, C., & Liu, X. (1993). Deep seismic refection evidence for continental under thrusting beneath southern Tibet. Nature, 366(6455), 557–559. https://doi.org/10.1038/366557a0

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to extend their sincere gratitude to Nuclear Power Corporation of India Limited (NPCIL), a Government of India undertaking, for encouraging this study. We want to thank the two anonymous reviewers for their thoughtful comments and efforts toward improving our manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions to this study are as follows. CKK: conceptualization, data curation, computation, methodology, analysis, and writing—original draft preparation. WKM: conceptualization, supervision, reviewing and editing.

Corresponding author

Correspondence to William Kumar Mohanty.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Consent for publication

Both authors give consent for this article to be published in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 21688 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshri, C.K., Mohanty, W.K. Seismic Site Response Studies for the Indo-Gangetic Plains of India with Special Emphasis on the Narora Nuclear Power Plant. Pure Appl. Geophys. 179, 4395–4427 (2022). https://doi.org/10.1007/s00024-022-03185-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03185-8

Keywords

Navigation