Log in

Tsunami Modeling in the South American Subduction Zone Inferred from Seismic Coupling and Historical Seismicity

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

A Correction to this article was published on 27 October 2021

This article has been updated

Abstract

Throughout its history, South America has experienced megathrust earthquakes which have produced large tsunamis, devastating coastal cities in the near and far field. Studying these phenomena is important for tsunami hazard mitigation in this region. We propose 10 earthquake scenarios along the South American subduction zone on the basis of the seismic history of each region, seismic-geodetic coupling, general scaling relationships, among others. Tsunami run-up (coastal amplification) is then estimated using 200 nonuniform stochastic sources for each scenario, totaling 2000 simulations. Our results show great variability in run-up distribution along the Nazca-South America subduction zone, with some of the most affected areas being Valparaiso in Chile, with a most likely scenario of 20 m of run-up and a maximum scenario of 33 m; and Lima in Peru, with 25 and 40 m for the most likely and maximum scenarios, respectively. Similar results are seen in Iquique and Huasco in Chile. We have also identified 17 coastal locations with a higher vulnerability due to local amplification of tsunami run-up and two instances in which a regional amplification can occur due to tsunami directivity and coastal barriers. We conclude that tsunami hazard remains high along the coast of South America, even in areas where great earthquakes have recently occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Abe, K. (1979). Size of great earthquakes of 1837–1974 inferred from tsunami data. Journal of Geophysical Research: Solid Earth, 84(B4), 1561–1568.

    Article  Google Scholar 

  • Aranguiz, R., Catalán, P. A., Cecioni, C., Bellotti, G., Henriquez, P., & González, J. (2019). Tsunami resonance and spatial pattern of natural oscillation modes with multiple resonators. Journal of Geophysical Research: Oceans, 124(11), 7797–7816.

    Article  Google Scholar 

  • Argus, D. F., & Gordon, R. G. (1991). No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophysical Research Letters, 18(11), 2039–2042.

    Article  Google Scholar 

  • Barrientos, S. E. (1988). Slip distribution of the 1985 central Chile earthquake. Tectonophysics, 145(3–4), 225–241.

    Article  Google Scholar 

  • Becerra, A., Sáez, E., Podestá, L., & Leyton, F. (2016). The 2014 earthquake in Iquique, Chile: Comparison between local soil conditions and observed damage in the cities of Iquique and Alto Hospicio. Earthquake Spectra, 32(3), 1489–1505.

    Article  Google Scholar 

  • Becerra, I., Aránguiz, R., González, J., & Benavente, R. (2020). An improvement of tsunami hazard analysis in Central Chile based on stochastic rupture scenarios. Coastal Engineering Journal, 62(4), 473–488.

    Article  Google Scholar 

  • Beck, S. L., & Nishenko, S. P. (1990). Variations in the mode of great earthquake rupture along the central Peru subduction zone. Geophysical Research Letters, 17(11), 1969–1972.

    Article  Google Scholar 

  • Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., & Ladner, R. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355–371.

    Article  Google Scholar 

  • Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J., & Simons, M. (2013). Andean structural control on interseismic coupling in the North Chile subduction zone. Nature Geoscience, 6(6), 462.

    Article  Google Scholar 

  • Bilek, S. L., & Ruff, L. J. (2002). Analysis of the 23 June 2001 Mw = 8.4 Peru underthrusting earthquake and its aftershocks. Geophysical Research Letters, 29(20), 21–31.

    Google Scholar 

  • Blaser, L., Krüger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America, 100(6), 2914–2926.

    Article  Google Scholar 

  • Bourgeois, J., Petroff, C., Yeh, H., Titov, V., Synolakis, C. E., Benson, B., & Norabuena, E. (1999). Geologie setting, field survey and modeling of the Chimbote, Northern Peru, Tsunami of 21 February 1996. In Seismogenic and tsunamigenic processes in shallow subduction zones (pp. 513–540). Birkhäuser: Basel.

    Chapter  Google Scholar 

  • Bravo, F., Koch, P., Riquelme, S., Fuentes, M., & Campos, J. (2019). Slip distribution of the 1985 Valparaíso earthquake constrained with seismic and deformation data. Seismological Research Letters, 90, 1792–1800.

    Google Scholar 

  • Carvajal, M., Cisternas, M., & Catalán, P. A. (2017a). Source of the 1730 Chilean earthquake from historical records: Implications for the future tsunami hazard on the coast of Metropolitan Chile. Journal of Geophysical Research: Solid Earth, 122(5), 3648–3660.

    Article  Google Scholar 

  • Carvajal, M., Cisternas, M., Gubler, A., Catalán, P. A., Winckler, P., & Wesson, R. L. (2017b). Reexamination of the magnitudes for the 1906 and 1922 Chilean earthquakes using Japanese tsunami amplitudes: Implications for source depth constraints. Journal of Geophysical Research: Solid Earth, 122(1), 4–17.

    Article  Google Scholar 

  • Catalán, P. A., Aránguiz, R., González, G., Tomita, T., Cienfuegos, R., González, J., & Gubler, A. (2015). The 1 April 2014 Pisagua tsunami: Observations and modeling. Geophysical Research Letters, 42(8), 2918–2925.

    Article  Google Scholar 

  • Chlieh, M., Perfettini, H., Tavera, H., Avouac, J.-P., Remy, D., Nocquet, J.-M., et al. (2011). Interseismic coupling and seismic potential along the central Andes subduction zone. Journal of Geophysical Research: Solid Earth, 116, B12405.

    Article  Google Scholar 

  • Cisternas, M., Atwater, B. F., Torrejón, F., Sawai, Y., Machuca, G., Lagos, M., Eipert, A., Youlton, C., Salgado, I., Kamataki, T., Shishikura, M., Rajendran, C. P., Malik, J. K., Rizal, Y., & Husni, M. (2005). Predecessors of the giant 1960 Chile earthquake. Nature, 437(7057), 404–407.

    Article  Google Scholar 

  • Comte, D., Eisenberg, A., Lorca, E., Pardo, M., Ponce, L., Saragoni, R., & Suárez, G. (1986). The 1985 central Chile earthquake: A repeat of previous great earthquakes in the region? Science, 233(4762), 449–453.

    Article  Google Scholar 

  • Comte, D., & Pardo, M. (1991). Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Natural Hazards, 4(1), 23–44.

    Article  Google Scholar 

  • Crempien, J. G. F., Urrutia, A., Benavente, R., & Cienfuegos, R. (2020). Effects of earthquake spatial slip correlation on variability of tsunami potential energy and intensities. Scientific Reports, 10, 8399.

    Article  Google Scholar 

  • De Risi, R., & Goda, K. (2016). Probabilistic earthquake–tsunami multi-hazard analysis: Application to the Tohoku region, Japan. Frontiers in Built Environment, 2, 25.

    Google Scholar 

  • Delouis, B., Monfret, T., Dorbath, L., Pardo, M., Rivera, L., Comte, D., & Cisternas, A. (1997). The Mw = 8.0 Antofagasta (northern Chile) earthquake of 30 July 1995: A precursor to the end of the large 1877 gap. Bulletin of the Seismological Society of America, 87(2), 427–445.

    Google Scholar 

  • Delouis, B., Nocquet, J.-M., & Vallée, M. (2010). Slip distribution of the February 27, 2010 Mw = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters, 37, L17305.

    Article  Google Scholar 

  • Dorbath, L., Cisternas, A., & Dorbath, C. (1990). Assessment of the size of large and great historical earthquakes in Peru. Bulletin of the Seismological Society of America, 80(3), 551–576.

    Google Scholar 

  • Drápela, J., Calisto, I., & Moreno, M. (2021). Locking-derived tsunami scenarios for the most recent megathrust earthquakes in Chile: Implications for tsunami hazard assessment. Natural Hazards, 107, 35–52.

    Article  Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.

    Article  Google Scholar 

  • Escobar, R. S., Diaz, L. O., Guerrero, A. M., Galindo, M. P., Mas, E., Koshimura, S., & Quintero, P. (2020). Tsunami hazard assessment for the central and southern pacific coast of Colombia. Coastal Engineering Journal, 62(4), 540–552.

    Article  Google Scholar 

  • Fuentes, M. S., Riquelme Muñoz, S., Medina, M., Mocanu, M., & Filippi Fernandez, R. (2019). Tsunami hazard evaluation in the Coquimbo region using nonuniform slip distribution sources. Seismological Research Letters, 90, 1812–1819.

    Google Scholar 

  • Fuentes, M., Riquelme, S., Hayes, G., Medina, M., Melgar, D., Vargas, G., et al. (2016). A study of the 2015 Mw 8.3 Illapel earthquake and tsunami: Numerical and analytical approaches. Pure Applied Geophysics, 173, 1847–1858.

    Article  Google Scholar 

  • Fuentes, M. A., Ruiz, J. A., & Riquelme, S. (2015). The runup on a multilinear slo** beach model. Geophysical Journal International, 201(2), 915–928.

    Article  Google Scholar 

  • Geist, E. L. (2002). Complex earthquake rupture and local tsunamis. Journal of Geophysical Research: Solid Earth, 107(B5), ESE-2.

    Article  Google Scholar 

  • Geist, E. L., & Dmowska, R. (1999). Local tsunamis and distributed slip at the source. In J. Sauber & R. Dmowska (Eds.), Seismogenic and tsunamigenic processes in shallow subduction zones. Pageoph Topical Volumes. Basel: Birkhäuser.

    Google Scholar 

  • Geist, E. L., & Parsons, T. (2006). Probabilistic analysis of tsunami hazards. Natural Hazards, 37(3), 277–314.

    Article  Google Scholar 

  • Goff, J., Witter, R., Terry, J., & Spiske, M. (2020). Palaeotsunamis in the Sino-Pacific region. Earth-Science Reviews, 210, 103352.

    Article  Google Scholar 

  • González, J., González, G., Aránguiz, R., Melgar, D., Zamora, N., Shrivastava, M. N., & Cienfuegos, R. (2020). A hybrid deterministic and stochastic approach for tsunami hazard assessment in Iquique, Chile. Natural Hazards, 100(1), 231–254.

    Article  Google Scholar 

  • Graves, R. W., & Pitarka, A. (2010). Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100(5A), 2095–2123.

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188.

    Article  Google Scholar 

  • Hayes, G. P., Herman, M. W., Barnhart, W. D., Furlong, K. P., Riquelme, S., Benz, H. M., & Samsonov, S. (2014). Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature, 512(7514), 295.

    Article  Google Scholar 

  • Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61.

    Article  Google Scholar 

  • Herrero, A., & Bernard, P. (1994). A kinematic self-similar rupture process for earthquakes. Bulletin of the Seismological Society of America, 84(4), 1216–1228.

    Article  Google Scholar 

  • Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981–2987.

    Article  Google Scholar 

  • Kanamori, H., & Cipar, J. J. (1974). Focal process of the great Chilean earthquake May 22, 1960. Physics of the Earth and Planetary Interiors, 9(2), 128–136.

    Article  Google Scholar 

  • Kanamori, H., & McNally, K. C. (1982). Variable rupture mode of the subduction zone along the Ecuador–Colombia coast. Bulletin of the Seismological Society of America, 72(4), 1241–1253.

    Google Scholar 

  • Kendrick, E. C., Bevis, M., Smalley, R. F., Jr., Cifuentes, O., & Galban, F. (1999). Current rates of convergence across the central Andes: Estimates from continuous GPS observations. Geophysical Research Letters, 26(5), 541–544.

    Article  Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., et al. (2012). Depth-varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research: Solid Earth, 117, B04311.

    Article  Google Scholar 

  • Lomnitz, C. (2004). Major earthquakes of Chile: A historical survey, 1535–1960. Seismological Research Letters, 75(3), 368–378.

    Article  Google Scholar 

  • Mai, P. M., & Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research: Solid Earth, 107(B11), ESE-10.

    Article  Google Scholar 

  • Mas, E., Adriano, B., Pulido, N., Jimenez, C., & Koshimura, S. (2014). Simulation of tsunami inundation in Central Peru from future megathrust earthquake scenarios. Journal of Disaster Research, 9(6), 961–967.

    Article  Google Scholar 

  • McCann, W. R., Nishenko, S. P., Sykes, L. R., & Krause, J. (1979). Seismic gaps and plate tectonics: Seismic potential for major boundaries. In M. Wyss (Ed.), Earthquake prediction and seismicity patterns. Contributions to Current Research in Geophysics. Basel: Birkhäuser.

    Google Scholar 

  • Melgar, D., & Hayes, G. P. (2019). The correlation lengths and hypocentral positions of great earthquakes. Bulletin of the Seismological Society of America, 109(6), 2582–2593.

    Article  Google Scholar 

  • Métois, M., Socquet, A., & Vigny, C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. Journal of Geophysical Research: Solid Earth, 117, B03406.

    Article  Google Scholar 

  • Métois, M., Socquet, A., Vigny, C., Carrizo, D., Peyrat, S., Delorme, A., & Ortega, I. (2013). Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophysical Journal International, 194(3), 1283–1294.

    Article  Google Scholar 

  • Métois, M., Vigny, C., & Socquet, A. (2016). Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38–18 S). Pure and Applied Geophysics, 173(5), 1431–1449.

    Article  Google Scholar 

  • Moreno, M. S., Bolte, J., Klotz, J., & Melnick, D. (2009). Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. Geophysical Research Letters, 36, L16310.

    Article  Google Scholar 

  • Mothes, P. A., Rolandone, F., Nocquet, J. M., Jarrin, P. A., Alvarado, A. P., Ruiz, M. C., & Segovia, M. (2018). Monitoring the earthquake cycle in the northern Andes from the Ecuadorian cGPS network. Seismological Research Letters, 89(2A), 534–541.

    Article  Google Scholar 

  • Nocquet, J. M., Jarrin, P., Vallée, M., Mothes, P. A., Grandin, R., Rolandone, F., & Régnier, M. (2017). Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake. Nature Geoscience, 10(2), 145.

    Article  Google Scholar 

  • Nocquet, J. M., Villegas-Lanza, J. C., Chlieh, M., Mothes, P. A., Rolandone, F., Jarrin, P., & Martin, X. (2014). Motion of continental slivers and cree** subduction in the northern Andes. Nature Geoscience, 7(4), 287.

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Article  Google Scholar 

  • Okal, E. A. (1988). Seismic parameters controlling far-field tsunami amplitudes: A review. Natural Hazards, 1(1), 67–96.

    Article  Google Scholar 

  • Okal, E. A., Borrero, J. C., & Synolakis, C. E. (2006). Evaluation of tsunami risk from regional earthquakes at Pisco, Peru. Bulletin of the Seismological Society of America, 96(5), 1634–1648.

    Article  Google Scholar 

  • Pacheco, J. F., Sykes, L. R., & Scholz, C. H. (1993). Nature of seismic coupling along simple plate boundaries of the subduction type. Journal of Geophysical Research: Solid Earth, 98(B8), 14133–14159.

    Article  Google Scholar 

  • Pelayo, A. M., & Wiens, D. A. (1990). The November 20, 1960 Peru tsunami earthquake: Source mechanism of a slow event. Geophysical Research Letters, 17(6), 661–664.

    Article  Google Scholar 

  • Ruiz, J. A., Fuentes, M., Riquelme, S., Campos, J., & Cisternas, A. (2015). Numerical simulation of tsunami runup in northern Chile based on non-uniform k-2 slip distributions. Natural Hazards, 79(2), 1177–1198.

    Article  Google Scholar 

  • Ruiz, S., Klein, E., del Campo, F., Rivera, E., Poli, P., Metois, M., & Madariaga, R. (2016). The seismic sequence of the 16 September 2015 M w 8.3 Illapel, Chile, earthquake. Seismological Research Letters, 87(4), 789–799.

    Article  Google Scholar 

  • Saillard, M., Audin, L., Rousset, B., Avouac, J. P., Chlieh, M., Hall, S. R., & Farber, D. L. (2017). From the seismic cycle to long-term deformation: Linking seismic coupling and Quaternary coastal geomorphology along the Andean megathrust. Tectonics, 36(2), 241–256.

    Article  Google Scholar 

  • Scholz, C. H., & Campos, J. (1995). On the mechanism of seismic decoupling and back arc spreading at subduction zones. Journal of Geophysical Research: Solid Earth, 100(B11), 22103–22115.

    Article  Google Scholar 

  • Scholz, C. H., & Campos, J. (2012). The seismic coupling of subduction zones revisited. Journal of Geophysical Research: Solid Earth, 117, B05310.

    Article  Google Scholar 

  • Sieh, K., Natawidjaja, D. H., Meltzner, A. J., Shen, C. C., Cheng, H., Li, K. S., & Edwards, R. L. (2008). Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science, 322(5908), 1674–1678.

    Article  Google Scholar 

  • Sladen, A., Tavera, H., Simons, M., Avouac, J. P., Konca, A. O., Perfettini, H., et al. (2010). Source model of the 2007 Mw 8.0 Pisco, Peru earthquake: Implications for seismogenic behavior of subduction megathrusts. Journal of Geophysical Research: Solid Earth, 115, B02405.

    Article  Google Scholar 

  • Spiske, M., Piepenbreier, J., Benavente, C., Kunz, A., Bahlburg, H., & Steffahn, J. (2013). Historical tsunami deposits in Peru: Sedimentology, inverse modeling and optically stimulated luminescence dating. Quaternary International, 305, 31–44.

    Article  Google Scholar 

  • Strasser, F. O., Arango, M. C., & Bommer, J. J. (2010). Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismological Research Letters, 81(6), 941–950.

    Article  Google Scholar 

  • Tichelaar, B. W., & Ruff, L. J. (1993). Depth of seismic coupling along subduction zones. Journal of Geophysical Research: Solid Earth, 98(B2), 2017–2037.

    Article  Google Scholar 

  • Trenkamp, R., Kellogg, J. N., Freymueller, J. T., & Mora, H. P. (2002). Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2), 157–171.

    Article  Google Scholar 

  • Udías, A., Madariaga, R., Buforn, E., Muñoz, D., & Ros, M. (2012). The large Chilean historical earthquakes of 1647, 1657, 1730, and 1751 from contemporary documents. Bulletin of the Seismological Society of America, 102(4), 1639–1653.

    Article  Google Scholar 

  • Vargas, C. A., Caneva, A., Monsalve, H., Salcedo, E., & Mora, H. (2018). Geophysical networks in Colombia. Seismological Research Letters, 89(2A), 440–445.

    Article  Google Scholar 

  • Vigny, C., Rudloff, A., Ruegg, J. C., Madariaga, R., Campos, J., & Alvarez, M. (2009). Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. Physics of the Earth and Planetary Interiors, 175(1–2), 86–95.

    Article  Google Scholar 

  • Vigny, C., Socquet, A., Peyrat, S., Ruegg, J. C., Métois, M., Madariaga, R., & Carrizo, D. (2011). The 2010 Mw 8.8 Maule megathrust earthquake of central Chile, monitored by GPS. Science, 332(6036), 1417–1421.

    Article  Google Scholar 

  • Villegas-Lanza, J. C., Chlieh, M., Cavalié, O., Tavera, H., Baby, P., Chire-Chira, J., & Nocquet, J. M. (2016a). Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. Journal of Geophysical Research: Solid Earth, 121(10), 7371–7394.

    Article  Google Scholar 

  • Villegas-Lanza, J. C., Nocquet, J. M., Rolandone, F., Vallée, M., Tavera, H., Bondoux, F., & Chlieh, M. (2016b). A mixed seismic–aseismic stress release episode in the Andean subduction zone. Nature Geoscience, 9(2), 150–154.

    Article  Google Scholar 

  • Williamson, A., Rim, D., Adams, L., LeVeque, R. J., Melgar, D., & Gonzalez, F. (2020). A source clustering approach for efficient inundation modeling and regional scale PTHA

  • Yamazaki, Y., & Cheung, K. F. (2011). Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake. Geophysical Research Letters, 38, L12605.

    Article  Google Scholar 

  • Yamazaki, Y., Kowalik, Z., & Cheung, K. F. (2009). Depth-integrated, non-hydrostatic model for wave breaking and run-up. International Journal for Numerical Methods in Fluids, 61(5), 473–497.

    Article  Google Scholar 

  • Ye, L., Kanamori, H., Avouac, J. P., Li, L., Cheung, K. F., & Lay, T. (2016). The 16 April 2016, MW 7.8 (MS 7.5) Ecuador earthquake: A quasi-repeat of the 1942 MS 7.5 earthquake and partial re-rupture of the 1906 MS 8.6 Colombia-Ecuador earthquake. Earth and Planetary Science Letters, 454, 248–258.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fondecyt 1170218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Fuentes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Grid

Grids for numerical simulations are constructed according to the Slab 2.0 model (Hayes et al., 2018). The following Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 show the domains and source area for each scenario. Profiles A through D show agreement from north to south of the constructed grid.

Fig. 8
figure 8

Central Perú scenario. White rectangle depicts the deformation area

Fig. 9
figure 9

North-Central Chile scenario. White rectangle depicts the deformation area

Fig. 10
figure 10

Norther Chile (Up) scenario. White rectangle depicts the deformation area

Fig. 11
figure 11

Colombia scenario. White rectangle depicts the deformation area

Fig. 12
figure 12

Southern Perú scenario. White rectangle depicts the deformation area

Fig. 13
figure 13

Ecuador–Colombia scenario. White rectangle depicts the deformation area

Fig. 14
figure 14

Northern Perú scenario. White rectangle depicts the deformation area

Fig. 15
figure 15

Central Chile scenario. White rectangle depicts the deformation area

Fig. 16
figure 16

Northern Chile scenario. White rectangle depicts the deformation area

Fig. 17
figure 17

Northern Chile (Down) scenario. White rectangle depicts the deformation area

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina, M., Riquelme, S., Fuentes, M. et al. Tsunami Modeling in the South American Subduction Zone Inferred from Seismic Coupling and Historical Seismicity. Pure Appl. Geophys. 178, 4941–4965 (2021). https://doi.org/10.1007/s00024-021-02808-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02808-w

Keywords

Navigation