Log in

Modeling of Long-Period Ground Motions in the Nankai Subduction Zone: Model Simulation Using the Accretionary Prism Derived from Oceanfloor Local S-Wave Velocity Structures

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The accretionary prism in the subduction zone, which consists of thick low-velocity oceanic sediments, significantly affects the propagation of seismic waves for shallow, offshore earthquakes, including large interplate earthquakes. In order to simulate long-period (> 5 s) ground motions in the Nankai subduction zone, we constructed a three-dimensional (3D) seismic velocity structure model of the accretionary prism by interpolation/extrapolation of local S-wave velocity structures beneath 46 oceanfloor seismic stations (DONET), which are deployed just above the accretionary prism off the southern Kii and eastern Shikoku regions. We modeled local S-wave velocity structures using a simple two-parameter depth-varying velocity function. To investigate the effects of the accretionary prism on ground and seafloor motions, we conducted numerical simulations of seismic wave propagation for three local earthquakes that occurred in southwestern Japan. The simulations reasonably reproduced the observed seismograms, not only for the period ranges of the moment tensor inversion (~ 50 s), but also for the strong, long-period ground motions in the sedimentary basins (~ 5 s), especially in the region where DONET stations are densely deployed. Since depth-varying, local S-wave structures significantly improve the reproducibility of long-period ground motions, our modeling procedure is useful for modeling long-period ground motions of local and regional offshore subduction zone earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amante, C., & Eakins, B. W. (2009). ETOPO1 Arc-minute global relief model: Procedure, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, Boulder, Colorado, USA, p. 19. https://doi.org/10.7289/v5c8276m.

  • Ando, M. (1975). Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan. Tectonophysics, 27(2), 119–140. https://doi.org/10.1016/0040-1951(75)90102-X.

    Article  Google Scholar 

  • Archuleta, R., & Ji, C. (2016). Moment rate scaling for earthquakes 3.3 ≤ M ≤ 5.3 with implications for stress drop. Geophysical Research Letters, 43, 12004–12011. https://doi.org/10.1002/2016GL071433.

    Article  Google Scholar 

  • Arroyo, I. G., Husen, S., Flueh, E. R., Gossler, J., Kissling, E., & Alvarado, G. E. (2009). Three-dimensional P-wave velocity structure on the shallow part of the central Costa Rican Pacific margin from local earthquake tomography using off- and onshore networks. Geophysical Journal International, 179, 827–849. https://doi.org/10.1111/j.1365-246X.2009.04342.x.

    Article  Google Scholar 

  • Asano, K., & Iwata, T. (2016). Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data. Earth, Planets and Space, 68, 147. https://doi.org/10.1186/s40623-016-0519-9.

    Article  Google Scholar 

  • Bozdağ, E., Trampert, J., & Tromp, J. (2011). Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophysical Journal International, 185, 845–870. https://doi.org/10.1111/j.1365-246X.2011.04970.x.

    Article  Google Scholar 

  • Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bulletin of the Seismological Society of America, 95, 2081–2092. https://doi.org/10.1785/0120050077.

    Article  Google Scholar 

  • Brocher, T. M. (2008). Key elements of regional seismic velocity models for long period ground motion simulations. Journal of Seismology, 12, 217–221. https://doi.org/10.1007/s10950-007-9061-3.

    Article  Google Scholar 

  • Cerjan, C., Kosloff, D., Kosloff, R., & Reshef, M. (1985). A non-reflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50, 705–708.

    Article  Google Scholar 

  • Dhakal, Y. P., Aoi, S., Kunugi, T., Suzuki, W., & Kimura, T. (2017). Assessment of nonlinear site response at ocean bottom seismograph sites based on S-wave horizontal-to-vertical spectral ratios: A study at the Sagami Bay area K-NET sites in Japan. Earth, Planets and Space, 69, 29. https://doi.org/10.1186/s40623-017-0615-5.

    Article  Google Scholar 

  • Fukuyama, E., Ishida, M., Dreger, D. S., & Kawai, H. (1998). Automated seismic moment tensor determination by using on-line broadband seismic waveforms. Zisin, 51, 149–156. https://doi.org/10.4294/zisin1948.51.1_149. (in Japanese with English abstract).

    Article  Google Scholar 

  • Furumura, T., & Chen, L. (2004). Large scale parallel simulation and visualization of 3D seismic wavefield using Earth simulator. Computer Modeling in Engineering and Sciences, 6, 153–168. https://doi.org/10.3970/cmes.2004.006.153.

    Google Scholar 

  • Furumura, T., Hayakawa, T., Nakamura, M., Koketsu, K., & Baba, T. (2008). Development of long-period ground motions from the Nankai Trough, Japan, earthquake: Observations and computer simulation of the 1944 Tonankai (M w 8.1) and the 2004 SE Off-Kii Peninsula (M w 7.4) earthquakes. Pure and Applied Geophysics, 165, 585–607. https://doi.org/10.1007/s00024-008-0318-8.

    Article  Google Scholar 

  • Furumura, T., Imai, K., & Maeda, T. (2011). A revised tsunami source model for the 1707 Hoei earthquake and simulation of tsunami inundation of Ryu** Lake, Kyushu. Japan. Journal of Geophysical Research, 116, B02308. https://doi.org/10.1029/2010JB007918.

    Google Scholar 

  • Furumura, T., & Kennett, B. L. N. (2017). Unusual strong ground motion across Japan from the 680 km deep 30 May 2015 Ogasawara Islands earthquake. Journal of Geophysical Research. https://doi.org/10.1002/2017jb014519.

    Google Scholar 

  • Furumura, T., & Nakamura, M. (2006). Recovering of strong motion record of the 1944 Tonankai earthquake and long period ground motion in Kanto region. Geophysical Exploration, 59, 337–351. (in Japanese with English abstract).

    Google Scholar 

  • Furumura, T., & Singh, S. K. (2002). Regional wave propagation from Mexican subduction zone earthquakes: The attenuation functions for interpolate and inslab events. Bulletin of the Seismological Society of America, 92, 2110–2125.

    Article  Google Scholar 

  • Guo, Y., Koketsu, K., & Miyake, H. (2016). Propagation mechanism of long-period ground motions for offshore earthquakes along the Nankai Trough: Effects of accretionary wedge. Bulletin of the Seismological Society of America, 106, 1176–1197. https://doi.org/10.1785/0120150315.

    Article  Google Scholar 

  • Hallo, M., Asano, K., & Gallovič, F. (2017). Bayesian inference and interpretation of centroid moment tensors of the 2016 Kumamoto earthquake sequence, Kyushu, Japan. Earth, Planets and Space, 69, 134. https://doi.org/10.1186/s40623-017-0721-4.

    Article  Google Scholar 

  • Hellfrich, G., Wookey, J., & Bastow, I. (2013). The seismic analysis code: A primer and users guide. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Hok, S., Fukuyama, E., & Hashimoto, C. (2011). Dynamic rupture scenarios of anticipated Nankai-Tonankai earthquakes, southwest Japan. Journal of Geophysical Research, 116, B12319. https://doi.org/10.1029/2011JB008492.

    Article  Google Scholar 

  • Ito, Y., & Obara, K. (2006a). Dynamic deformation of the accretionary prism excites very low frequency earthquakes. Geophysical Research Letters, 33, L02311. https://doi.org/10.1029/2005GL025270.

    Google Scholar 

  • Ito, Y., & Obara, K. (2006b). Very low-frequency earthquakes within accretionary prisms are very low stress-drop earthquakes. Geophysical Research Letters, 33, L09302. https://doi.org/10.1029/2006GL025883.

    Google Scholar 

  • Iwaki, A., Morikawa, N., Maeda, T., Aoi, S., & Fujiwara, H. (2013). Finite-difference simulation of long-period ground motion for the Sagami trough megathrust earthquakes. Journal of Disaster Research, 8, 926–940.

    Article  Google Scholar 

  • Ji, C., Helmberger, D. V., Wald, D. J., & Ma, K. F. (2003). Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research, 108, 2412. https://doi.org/10.1029/2002JB001764.

    Google Scholar 

  • Kamei, R., Pratt, R. G., & Tsuji, T. (2012). Waveform tomography imaging of a megasplay fault system in the seismogenic Nankai subduction zone. Earth and Planetary Science Letters, 317, 343–353. https://doi.org/10.1016/j.epsl.2011.10.042.

    Article  Google Scholar 

  • Kanamori, H., & Brodsky, E. (2004). The physics of earthquake. Reports on Progress in Physics, 67, 1429–1496.

    Article  Google Scholar 

  • Kaneda, Y., Kawaguchi, K., Araki, E., Matsumoto, H., Nakamura, T., Kamiya, S., et al. (2015). Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis. In P. Favali, et al. (Eds.), Seafloor observatories (pp. 643–662). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-11374-1_25.

    Chapter  Google Scholar 

  • Kawaguchi, K., Kaneko, S., Nishida, T., & Komine, T. (2015). Construction of the DONET real-time seafloor observatory for earthquakes and tsunami monitoring. In P. Favali, et al. (Eds.), Seafloor observatories (pp. 211–228). Berlin, Heidelberg: Springer Praxis Books. https://doi.org/10.1007/978-3-642-11374-1_10.

    Chapter  Google Scholar 

  • Kikuchi, M., Nakamura, M., & Yoshikawa, K. (2003). Source rupture processes of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from low-gain seismograms. Earth, Planets and Space, 55, BF03351745. https://doi.org/10.1186/bf03351745.

    Article  Google Scholar 

  • Kim, S., Saito, T., Fukuyama, E., & Kang, T. S. (2016). The Nankai Trough earthquake tsunamis in Korea: Numerical studies of the 1707 Hoei earthquake and physics-based scenarios. Earth, Planets and Space, 68, 64. https://doi.org/10.1186/s40623-016-0438-9.

    Article  Google Scholar 

  • Kimura, T., Murakami, H., & Matsumoto, T. (2015). Systematic monitoring of instrumentation health in high-density broadband seismic networks. Earth, Planets and Space, 67, 55. https://doi.org/10.1186/s40623-015-0226-y.

    Article  Google Scholar 

  • Koketsu, K., & Miyake, H. (2008). A seismological overview of long-period ground motion. Journal of Seismology, 12, 133–143. https://doi.org/10.1007/s10950-007-9080-0.

    Article  Google Scholar 

  • Koketsu, K., Miyake, H., Fujiwara, H. & Hashimoto, T. (2008). Progress towards a Japan integrated velocity structure model and long-period ground motion hazard map. In Proceedings of the 14th world conference on earthquake engineering, Bei**g China, 12–17 October.

  • Koketsu, K., Miyake, H. & Suzuki, H. (2012). Japan integrated velocity structure model version 1. In Proceedings of the 15th world conference on earthquake engineering, Lisbon, Portugal, 24–28 September.

  • Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S., Satake, K., et al. (2011). A unified source model for the 2011 Tohoku earthquake. Earth and Planetary Science Letters, 310(3), 480–487. https://doi.org/10.1016/j.epsl.2011.09.009.

    Article  Google Scholar 

  • Kristek, J., Moczo, P., & Archuleta, R. (2002). Efficient methods to simulate planar free surface in the 3D 4th-order staggered-grid finite-difference schemes. Studia Geophysica et Geodaetica, 46(2), 355–381.

    Article  Google Scholar 

  • Kubo, A., Fukuyama, E., Kawai, H., & Nonomura, K. (2002). NIED seismic moment tensor catalogue for regional earthquakes around Japan: Quality test and application. Tectonophysics, 356, 23–48. https://doi.org/10.1016/S0040-1951(02)00375-X.

    Article  Google Scholar 

  • Kubo, H., Nakamura, T., Suzuki, W., Dhakal, Y. P., Kimura, T., Kunugi, T., Takahashi, N. & Aoi, S. (2018b). Ground-motion characteristics and nonlinear soil response observed by DONET1 seafloor observation network during the 2016 southeast off Mie, Japan, earthquake (under review).

  • Kubo, H., Nakamura, T., Suzuki, W., Kimura, T., Kunugi, T., Takahashi, N., et al. (2018a). Site amplification characteristics at Nankai seafloor observation network DONET1, Japan, evaluated using spectral inversion. Bulletin of the Seismological Society of America, 108, 1210–1218. https://doi.org/10.1785/0120170254.

    Article  Google Scholar 

  • Kubo, H., Suzuki, W., Aoi, S., & Sekiguchi, H. (2017). Source rupture process of the 2016 central Tottori, Japan, earthquake (M JMA 6.6) inferred from strong motion waveforms. Earth, Planets and Space, 69, 127. https://doi.org/10.1186/s40623-017-0714-3.

    Article  Google Scholar 

  • Maeda, T., Furumura, T., Noguchi, S., Takemura, S., Sakai, S., Shinohara, M., et al. (2013). Seismic- and tsunami-wave propagation of the 2011 off the Pacific coast of Tohoku earthquake as inferred from the tsunami-coupled finite-difference simulation. Bulletin of the Seismological Society of America, 103, 1456–1472. https://doi.org/10.1785/0120120118.

    Article  Google Scholar 

  • Maeda, T., Iwaki, A., Morikawa, N., Aoi, S., & Fujiwara, H. (2016a). Seismic-hazard analysis of long-period ground motion of megathrust earthquakes in the Nankai trough based on 3D finite-difference simulation. Seismological Research Letters, 87, 1265–1273. https://doi.org/10.1785/0220160093.

    Article  Google Scholar 

  • Maeda, T., Nishida, K., Takagi, R., & Obara, K. (2016b). Reconstruction of a 2D seismic wavefield by seismic gradiometry. Progress in Earth and Planetary Science, 3, 31. https://doi.org/10.1186/s40645-016-0107-4.

    Article  Google Scholar 

  • Maeda, T., Obara, K., Furumura, T., & Saito, T. (2011). Interference of long-period seismic wavefield observed by the dense Hi-net array in Japan. Journal of Geophysical Research, 116, B10303. https://doi.org/10.1029/2011JB008464.

    Article  Google Scholar 

  • Maeda, T., Takemura, S., & Furumura, T. (2017). OpenSWPC: An open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media. Earth, Planets and Space, 69, 102. https://doi.org/10.1186/s40623-017-0687-2.

    Article  Google Scholar 

  • Miyake, H., & Koketsu, K. (2005). Long-period ground motions from a large offshore earthquake: The case of the 2004 off the Kii peninsula earthquake, Japan. Earth, Planets and Space, 57, 203–207. https://doi.org/10.1186/BF03351816.

    Article  Google Scholar 

  • Nakamura, T., Takenaka, H., Okamoto, T., Ohori, M., & Tsuboi, S. (2015). Long-period ocean-bottom motions in the source areas of large subduction earthquakes. Scientific Reports, 5, 16648. https://doi.org/10.1038/srep16648.

    Article  Google Scholar 

  • Nakano, M., Nakamura, T., & Kaneda, Y. (2015). Hypocenters in the Nankai Trough determined by using data from both ocean-bottom and land seismic networks and a 3D velocity structure model: Implications for seismotectonic activity. Bulletin of the Seismological Society of America, 105(3), 1594–1605. https://doi.org/10.1785/0120140309.

    Article  Google Scholar 

  • Nishida, K., Kawakatsu, H., & Obara, K. (2008). Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters. Journal of Geophysical Research, 113, B10302. https://doi.org/10.1029/2007JB005395.

    Article  Google Scholar 

  • Noguchi, S., Maeda, T., & Furumura, T. (2016). Ocean-influenced Rayleigh waves from outer-rise earthquakes and their effects on durations of long-period ground motion. Geophysical Journal International, 205, 1099–1107. https://doi.org/10.1093/gji/ggw074.

    Article  Google Scholar 

  • Nolet, G., & Dorman, L. M. (1996). Waveform analysis of Scholte modes in ocean sediment layers. Geophysical Journal International, 125, 385–396. https://doi.org/10.1111/j.1365-246X.1996.tb00006.x.

    Article  Google Scholar 

  • Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science, 353, 253–257. https://doi.org/10.1126/science.aaf1512.

    Article  Google Scholar 

  • Okada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H., et al. (2004). Recent progress of seismic observation networks in Japan—Hi-net, F-net, K-NET and KiK-net. Earth, Planets and Space, 56(8), BF03353076. https://doi.org/10.1186/bf03353076.

    Article  Google Scholar 

  • Okamoto, T. (2002). Full waveform moment tensor inversion by reciprocal finite difference Green’s function. Earth, Planets and Space, 54, 715–720. https://doi.org/10.1186/BF03351723.

    Article  Google Scholar 

  • Okamoto, T., Takenaka, H., Nakamura, T., & Hara, T. (2017). FDM simulation of earthquakes off western Kyushu, Japan, using a land–ocean unified 3D structure model. Earth, Planets and Space, 69, 88. https://doi.org/10.1186/s40623-017-0672-9.

    Article  Google Scholar 

  • Park, J. O., Tsuru, T., Kodaira, S., Cummins, P. R., & Kaneda, Y. (2002). Splay fault branching along the Nankai subduction zone. Science, 297, 1157–1160. https://doi.org/10.1126/science.1074111.

    Article  Google Scholar 

  • Petukhin, A., Miyakoshi, K., Tsurugi, M., Kawase, H., & Kamae, K. (2016). Visualization of Green’s function anomalies for megathrust source in Nankai trough by reciprocity method. Earth, Planets and Space, 68, 4. https://doi.org/10.1186/s40623-016-0385-5.

    Article  Google Scholar 

  • Ravve, I., & Koren, Z. (2006). Exponential asymptotically bounded velocity model: Part I—Effective models and velocity transformations. Geophysics, 71, T53–T65. https://doi.org/10.1190/1.2196033.

    Article  Google Scholar 

  • Robertsson, J., Blanch, J. O., & Symes, W. W. (1994). Viscoelastic finite-difference modeling. Geophysics, 59, 1444–1456. https://doi.org/10.1190/1.1443701.

    Article  Google Scholar 

  • Ruan, Y., Forsyth, D. W., & Bell, W. (2014). Marine sediment shear velocity structure from the ratio of displacement to pressure of Rayleigh waves at seafloor. Journal of Geophysical Research, 119, 6357–6371. https://doi.org/10.1002/2014JB011162.

    Google Scholar 

  • Saito, T. (2017). Tsunami generation: Validity and limitations of conventional theories. Geophysical Journal International, 210, 1888–1900. https://doi.org/10.1093/gji/ggx275.

    Article  Google Scholar 

  • Saito, T., & Tsushima, H. (2016). Synthesizing ocean bottom pressure records including seismic wave and tsunami contributions: Toward realistic tests of monitoring system. Journal of Geophysical Research, 121, 8175–8195. https://doi.org/10.1002/2016JB013195.

    Google Scholar 

  • Shapiro, N., Campillo, M., Singh, S. K., & Pacheco, J. (1998). Seismic channel waves in the accretionary prism of the Middle America Trench. Geophysical Research Letters, 25, 101–104.

    Article  Google Scholar 

  • Shapiro, N. M., Olsen, K. B., & Singh Shri, K. (2002). On the duration of seismic motion incident onto the Valley of Mexico for subduction zone earthquake. Geophysical Journal International, 151, 501–510. https://doi.org/10.1046/j.1365-246X.2002.01789.x.

    Article  Google Scholar 

  • Shinohara, M., Fukano, T., Kanazawa, T., Araki, R., Suehiro, K., Mochizuki, M., et al. (2008). Upper mantle and crustal seismic structure beneath the Northwestern Pacific Basin using a seafloor borehole broadband seismometer and ocean bottom seismometers. Physics of the Earth and Planetary Interior, 170, 95–106. https://doi.org/10.1016/j.pepi.2008.07.039.

    Article  Google Scholar 

  • Storchak, D. A., Giacomo, D. D., Bondár, I., Engdahl, E. R., Harris, J., Lee, W. H. K., et al. (2013). Public release of the ISC-GEM global instrumental earthquake catalogue. Seismological Research Letters, 84(5), 810–815. https://doi.org/10.1785/0220130034.

    Article  Google Scholar 

  • Sugioka, H., Okamoto, T., Nakamura, T., Ishihara, Y., Ito, A., Obana, K., et al. (2012). Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip. Nature Geoscience, 5, 414–418. https://doi.org/10.1038/ngeo1466.

    Article  Google Scholar 

  • Takemura, S., Akatsu, M., Masuda, K., Kajikawa, K., & Yoshimoto, K. (2015a). Long-period ground motions in a laterally inhomogeneous large sedimentary basin: Observations and model simulations of long-period surface waves in the northern Kanto Basin, Japan. Earth, Planets and Space, 67, 33. https://doi.org/10.1186/s40623-015-0201-7.

    Article  Google Scholar 

  • Takemura, S., Furumura, T., & Maeda, T. (2015b). Scattering of high-frequency seismic waves caused by irregular surface topography and small-scale velocity inhomogeneity. Geophysical Journal International, 201(1), 459–474. https://doi.org/10.1093/gji/ggv038.

    Article  Google Scholar 

  • Takemura, S., Kimura, T., Saito, T., Kubo, H., & Shiomi, K. (2018). Moment tensor inversion of the 2016 southwest offshore Mie earthquake occurred in the Tonankai region using a three-dimensional velocity structure model: Effects of the accretionary prism and subducting oceanic plate. Earth, Planets and Space, 70, 50. https://doi.org/10.1186/s40623-018-0819-3.

    Article  Google Scholar 

  • Takemura, S., Kobayashi, M., & Yoshimoto, K. (2017a). High-frequency seismic wave propagation within the heterogeneous crust: Effects of seismic scattering and intrinsic attenuation on ground motion modelling. Geophysical Journal International, 210, 1806–1822. https://doi.org/10.1093/gji/ggx269.

    Article  Google Scholar 

  • Takemura, S., Saito, T., & Shiomi, K. (2017b). Sequence of deep-focus earthquakes beneath the Bonin Islands identified by the NIED nationwide dense seismic networks Hi-net and F-net. Earth, Planets and Space, 69, 38. https://doi.org/10.1186/s40623-017-0625-3.

    Article  Google Scholar 

  • Takemura, S., Shiomi, K., Kimura, T., & Saito, T. (2016). Systematic difference between first-motion and waveform-inversion solutions for shallow offshore earthquakes due to a low-angle dip** slab. Earth, Planets and Space, 68, 149. https://doi.org/10.1186/s40623-016-0527-9.

    Article  Google Scholar 

  • Takemura, S., Yoshimoto, K., & Tonegawa, T. (2015c). Velocity increase in the uppermost oceanic crust of the Philippine Sea plate beneath the Kanto region due to dehydration inferred from high-frequency trapped P waves. Earth, Planets and Space, 67, 41. https://doi.org/10.1186/s40623-015-0210-6.

    Article  Google Scholar 

  • Todoriki, M., Furumura, T., & Maeda, T. (2017). Effects of sea water on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes. Geophysical Journal International, 208, 226–233. https://doi.org/10.1093/gji/ggw388.

    Article  Google Scholar 

  • Tonegawa, T., Araki, E., Nakamura, T., Nakano, M., & Suzuki, K. (2017). Sporadic low-velocity volumes spatially correlate with shallow very low-frequency earthquake clusters. Nature Communications, 8, 2048. https://doi.org/10.1038/s41467-017-02276-8.

    Article  Google Scholar 

  • Tonegawa, T., Fukao, Y., Takahashi, T., Obana, K., & Kodaira, S. (2015). Ambient seafloor noise excited by earthquakes in the Nankai subduction zone. Nature Communications, 6, 6132. https://doi.org/10.1038/ncomms7132.

    Article  Google Scholar 

  • Volk, O., Shani-Kadmiel, S., Gvirtzman, Z., & Tsesarsky, M. (2017). 3D effects of sedimentary wedges and subsurface canyons: Ground-motion amplification in the Israeli coastal plain. Bulletin of the Seismological Society of America, 107(3), 1324–1335. https://doi.org/10.1785/0120160349.

    Article  Google Scholar 

  • Wessel, P., Smith, W. H. F., Scharoo, R., Luis, J., & Wobbe, F. (2013). Generic map** tools: Improved version released. EOS, Transactions of American Geophysical Union, 94(45), 409–410. https://doi.org/10.1002/2013EO450001.

    Article  Google Scholar 

  • Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T., & Asada, A. (2016). Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature, 534, 374–377. https://doi.org/10.1038/nature17632.

    Article  Google Scholar 

  • Yoshimoto, K., & Takemura, S. (2014a). Surface wave excitation at the northern edge of the Kanto Basin, Japan. Earth, Planets and Space, 66, 16. https://doi.org/10.1186/1880-5981-66-16.

    Article  Google Scholar 

  • Yoshimoto, K., & Takemura, S. (2014b). A study on the predominant period of long-period ground motions in the Kanto Basin, Japan. Earth, Planets and Space, 66, 100. https://doi.org/10.1186/1880-5981-66-100.

    Article  Google Scholar 

Download references

Acknowledgements

F-net, Hi-net, and DONET waveform data and F-net MT solutions are available via the website of the National Research Institute for Earth Science and Disaster Resilience, Japan (http://www.hinet.bosai.go.jp/). The frequency response of the short-period Hi-net sensors with a natural frequency of 1 Hz was corrected using the program of Maeda et al. (2011) via Dr. Maeda’s GitHub page (https://github.com/takuto-maeda/hinet_decon/releases). Bathymetric data were obtained from ETOPO1 (Amante and Eakins 2009). Generic Map** Tools (Wessel et al. 2013) and Seismic Analysis Code (SAC; Hellfrich et al. 2013) were used to create figures and conduct signal processing, respectively. The FDM simulations of seismic wave propagation were conducted on the Earth Simulator of the Japan Agency for Marine-Earth Science and Technology. This study was supported by the Tokyo Marine Kagami Memorial Foundation, a Grant-in-Aid for Seismology, the Grants-in-Aid program of the Japan Society for the Promotion of Science (#17K14382), and by a collaborative research program of the Earthquake Research Institute, the University of Tokyo (#2015-B-01). We also thank two anonymous reviewers and the Editor Dr. B. Edwards for careful reviewing and constructive comments, which have helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Takemura.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takemura, S., Kubo, H., Tonegawa, T. et al. Modeling of Long-Period Ground Motions in the Nankai Subduction Zone: Model Simulation Using the Accretionary Prism Derived from Oceanfloor Local S-Wave Velocity Structures. Pure Appl. Geophys. 176, 627–647 (2019). https://doi.org/10.1007/s00024-018-2013-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2013-8

Keywords

Navigation