Log in

First Boundary Dirac Eigenvalue and Boundary Capacity Potential

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We derive new lower bounds for the first eigenvalue of the Dirac operator of an oriented hypersurface \(\Sigma \) bounding a noncompact domain in a spin asymptotically flat manifold \((M^n,g)\) with nonnegative scalar curvature. These bounds involve the boundary capacity potential and, in some cases, the capacity of \(\Sigma \) in \((M^n,g)\) yielding several new geometric inequalities. The proof of our main result relies on an estimate for the first eigenvalue of the Dirac operator of boundaries of compact Riemannian spin manifolds endowed with a singular metric which may have independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostiniani, V., Mazzieri, L., Oronzio, F.: A geometric capacitary inequality for sub-static manifolds with harmonic potentials. Math. Eng. 4(2), 40 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 39(5), 661–693 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourguignon, J.-P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Comm. Math. Phys. 144(3), 581–599 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bray, H.L., Lee, D.A.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bray, H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chruściel, P.T.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In Topological properties and global structure of space-time (Erice, 1985), vol. 138, NATO Adv. Sci. Inst. Ser. B Phys., pp. 49–59. Plenum, New York, (1986)

  7. Herzlich, M.: A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds. Comm. Math. Phys. 188(1), 121–133 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Herzlich, M.: Minimal surfaces, the Dirac operator and the Penrose inequality. In Séminaire de Théorie Spectrale et Géométrie, Vol. 20, Année 2001–2002, volume 20 of Sémin. Théor. Spectr. Géom., pp 9–16. Univ. Grenoble I, Saint-Martin-d’Hères, (2002)

  9. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirsch, S., Miao, P.: A positive mass theorem for manifolds with boundary. Pacific J. Math. 306(1), 185–201 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hijazi, O., Montiel, S., Zhang, X.: Dirac operator on embedded hypersurfaces. Math. Res. Lett. 8(1–2), 195–208 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hijazi, O., Montiel, S., Zhang, X.: Conformal lower bounds for the Dirac operator of embedded hypersurfaces. Asian J. Math. 6(1), 23–36 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lichnerowicz, A.: Spineurs harmoniques. C. R. Acad. Sci. Paris 257, 7–9 (1963)

    MathSciNet  MATH  Google Scholar 

  14. Lee, D.A., LeFloch, P.G.: The positive mass theorem for manifolds with distributional curvature. Comm. Math. Phys. 339(1), 99–120 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Mantoulidis, C., Miao, P., Tam, L.-F.: Capacity, quasi-local mass, and singular fill-ins. J. Reine Angew. Math. 768, 55–92 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Parker, T., Taubes, C.H.: On Witten’s proof of the positive energy theorem. Comm. Math. Phys. 84(2), 223–238 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Raulot, S.: Rigidity of compact Riemannian spin manifolds with boundary. Lett. Math. Phys. 86(2–3), 177–192 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Raulot, S.: A spinorial proof of the rigidity of the Riemannian Schwarzschild manifold. Class. Quantum Gravity 38(8), 085015 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Shi, Y., Tam, L.-F.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62(1), 79–125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schoen, R.M., Yau, S.-T.: Complete manifolds with nonnegative scalar curvature and the positive action conjecture in general relativity. Proc. Nat. Acad. Sci. U.S.A. 76(3), 1024–1025 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Schoen, R.M., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65(1), 45–76 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Smith, P.D., Yang, D.: Removing point singularities of Riemannian manifolds. Trans. Amer. Math. Soc. 333(1), 203–219 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Witten, E.: A new proof of the positive energy theorem. Comm. Math. Phys. 80(3), 381–402 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Raulot.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Mass and Capacity

A smooth, connected, n-dimensional Riemannian manifold \((M^n,g)\) is said to be asymptotically flat (of order p) if there exists a compact subset \(K\subset M\) such that \(M\setminus K\) is a finite disjoint union of ends \(M_k\), each of them being diffeomorphic to \({\mathbb {R}}^n\) minus a closed ball \({\overline{B}}\) by a coordinate chart in which the components of the metric satisfy

$$\begin{aligned} g_{ij} = \delta _{ij} +O_2\big (r^{-p}\big )\quad \text {and}\quad R_g\in L^1(M) \end{aligned}$$

for \(i,j=1,\ldots ,n\) and \(p>(n-2)/2\). Here, \(O_2(r^{-p})\) refers to a real-valued function f such that

$$\begin{aligned} |f(x)|+r|\partial f(x)|+r^2|\partial ^2f(x)|\le Cr^{-p} \end{aligned}$$

as r goes to infinity, for some constant \(C>0\) and where \(\partial \) is the standard derivative in the Euclidean space. Such a coordinate chart is often referred to as a chart at infinity. In the following, we assume that \(k=1\) and the general case can be treated in a similar way.

On an asymptotically flat manifold \((M^n,g)\), the ADM mass is defined by

$$\begin{aligned} m_{ADM}(M,g):=\frac{1}{2(n-1) \omega _{n-1}}\lim _{R\rightarrow +\infty }\sum _{i,j=1}^n\int _{{\mathcal {S}}_R}(g_{ij,i}-g_{ii,j}) \frac{x^j}{r}d{\overline{\mu }}_{{{\mathcal {S}}_R}} \end{aligned}$$

where \({\mathcal {S}}_R\) stands for a coordinate sphere of radius for \(R>0\), \(d{\overline{\mu }}_{{{\mathcal {S}}_r}}\) its Euclidean Riemannian volume element and \(g_{ij,s}\) for the derivative of the metric components in the coordinate chart. Although this definition seems to depend on a particular choice of the coordinates chart, it was proved independently by Bartnik [2] and Chruściel [6] that it is in fact a well-defined geometric invariant.

On asymptotically flat manifolds of order p, the boundary capacity potential \(\phi \in C^\infty (M)\) satisfying (1.4) has the following expansion

$$\begin{aligned} \phi (x)=\frac{{\mathcal {C}}_g(\Sigma ,M)}{r^{n-2}}+O_2(r^{-(n-2+p)}) \end{aligned}$$
(A.1)

as \(r\rightarrow \infty \) (see [1, Theorem 2.2] for example).

Appendix B. The Riemannian Schwarzschild Manifolds

Here, we recall some standard computations in the Riemannian Schwarzschild manifolds. The Riemannian Schwarzschild manifold of mass \(m\in {\mathbb {R}}\) is the Riemannian manifold \(({\mathbb {M}}^n_m,g_m)\) where

$$\begin{aligned} {\mathbb {M}}^n_m:= \left\{ \begin{array}{ll} {\mathbb {R}}^n\setminus \{0\} &{} \text { if } m>0\\ {\mathbb {R}}^n &{} \text { if } m=0\\ {\mathbb {R}}^{n}\setminus \big \{r\le \big (|m|/2\big )^{1/(n-2)}\big \} &{} \text { if } m<0 \end{array} \right. \end{aligned}$$

and with metric

$$\begin{aligned} g_m=\left( 1+\frac{m}{2r^{n-2}}\right) ^{\frac{4}{n-2}}\delta \end{aligned}$$

where \(r:=|x|\) is the Euclidean radius for \(x\in {\mathbb {M}}^n_M\). It is a static manifold in the sense that the Lorentzian manifold

$$\begin{aligned} \left( {\mathfrak {L}}^{n+1}:={\mathbb {R}}\times {\mathbb {M}}^n_m,{\mathfrak {g}}_m:=-N_m^2\,dt^2+g_m\right) \end{aligned}$$

is a spacetime which satisfies the Einstein vacuum equations with zero cosmological constant. Here, \(N_m\) denotes the smooth harmonic function given by

$$\begin{aligned} N_m(x)=\left( 1-\frac{m}{2r^{n-2}}\right) \left( 1+\frac{m}{2r^{n-2}}\right) ^{-1} \end{aligned}$$

generally referred to as the lapse function. For \(r_0\in (r_*,\infty )\) with \(r_*=0\) if \(m\ge 0\) and \(r_*=(|m|/2)^{1/(n-2)}\), we consider the exterior of the region outside a rotationally symmetric sphere defined by

$$\begin{aligned} {\mathbb {M}}_m^n(r_0):=\Big \{x\in {\mathbb {M}}^n_m\,/\,r\ge r_0\Big \}. \end{aligned}$$

This is an n-dimensional, spin, complete, asymptotically flat manifold with zero scalar curvature and connected inner boundary \(\Sigma _{r_0}\) with induced metric \(\gamma _{r_0}\) isometric to a round sphere with radius

$$\begin{aligned} r_{g_m,r_0}:=r_0\left( 1+\frac{m}{2r_0^{n-2}}\right) ^{\frac{2}{n-2}} \end{aligned}$$

and constant mean curvature

$$\begin{aligned} H_{g_m,r_0}=\frac{n-1}{r_0}\left( 1-\frac{m}{2r_0^{n-2}}\right) \left( 1+\frac{m}{2r_0^{n-2}}\right) ^{-\frac{n}{n-2}}. \end{aligned}$$

Remark that for \(m>0\), the region \({\mathbb {R}}\times {\mathbb {M}}^n_m(r_m)\) with \(r_m=(m/2)^{1/(n-2)}\) represents the exterior of a black hole with event horizon at \(r=r_m\) in \(({\mathfrak {L}}^{n+1},{\mathfrak {g}}_m)\). On the other hand, the boundary capacity potential of \(\Sigma _{r_0}\) in \(\big ({\mathbb {M}}^n_m,g_m\big )\) can be computed to be

$$\begin{aligned} \phi _{r_0}(x)=\left( 1+\frac{m}{2r_0^{n-2}}\right) \left( 1+\frac{m}{2r^{n-2}}\right) ^{-1}\left( \frac{r_0}{r}\right) ^{n-2}. \end{aligned}$$

Thus, it holds on \(\Sigma _{r_0}\) that

$$\begin{aligned} \frac{\partial \phi _{r_0}}{\partial \nu }=-\frac{n-2}{r_0}\left( 1+\frac{m}{2r_0^{n-2}}\right) ^{-\frac{n}{n-2}} \end{aligned}$$

and then

$$\begin{aligned} {\mathcal {C}}_{g_m}\left( \Sigma _{r_0},{\mathbb {M}}^n_m(r_0)\right) =\frac{m}{2}+r_0^{n-2}. \end{aligned}$$

It is also relevant to note that

$$\begin{aligned} -2\frac{n-1}{n-2}\frac{\partial \phi _{r_0}}{\partial \nu }-H_{g_m,r_0}=\frac{n-1}{r_{g_m,r_0}} \end{aligned}$$

so that this leads to the following interpretation

$$\begin{aligned} \lambda _1(D\!\!\!\!/\,_{r_0})=-\frac{n-1}{n-2}\frac{\partial \phi _{r_0}}{\partial \nu }-\frac{H_{g_m,r_0}}{2} \end{aligned}$$

in terms of \(\lambda _1(D\!\!\!\!/\,_{r_0})\) the first eigenvalue of the Dirac operator \(D\!\!\!\!/\,_{r_0}\) of \((\Sigma _{r_0},\gamma _{r_0})\). This implies that the manifold \({\mathbb {M}}_m^n(r_0)\) satisfies the equality case in the estimate of Theorem 1.3.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raulot, S. First Boundary Dirac Eigenvalue and Boundary Capacity Potential. Ann. Henri Poincaré 24, 1245–1264 (2023). https://doi.org/10.1007/s00023-022-01233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01233-6

Mathematics Subject Classification

Navigation