Log in

Fractional Choquard Equations with an Inhomogeneous Combined Non-linearity

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This note studies the Schrödinger–Choquard equation with an inhomogeneous combined source term and a fractional Laplacian operator

$$\begin{aligned} i\dot{u}-(-\Delta )^s u= \pm |x|^{b}|u|^{2(p-1)}u\pm (I_\alpha *|u|^{q})|u|^{q-2}u. \end{aligned}$$

Indeed, for \(b\ne 0\) and \(0<s<1\), one obtains a sharp threshold of global existence versus finite time blow-up dichotomy for mass-super-critical and energy sub-critical radial solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boulenger, T., Himmelsbach, D., Lenzmann, E.: Blow-up for fractional NLS. J. Funct. Anal. 271, 2569–2603 (2016)

    Article  MathSciNet  Google Scholar 

  2. Cho, Y., Hwang, G., Kwon, S., Lee, S.: On finite time blow-up for the mass-critical Hartree equations. Proc. R. Soc. Edinb. Sect. A 145(3), 467–479 (2015)

    Article  MathSciNet  Google Scholar 

  3. Cho, Y., Hwang, G., Kwon, S., Lee, S.: Profile decomposition and blow-up phenomena of mass-critical fractional Schrödinger equations. Nonlinear Anal. 86, 12–29 (2013)

    Article  MathSciNet  Google Scholar 

  4. Cho, Y., Ozawa, T.: Sobolev inequalities with symmetry. Commun. Contemp. Math. 11, 355–365 (2009)

    Article  MathSciNet  Google Scholar 

  5. Dinh, V.D.: On blowup solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Commun. Pure Appl. Anal. 18, 689–708 (2019)

    Article  MathSciNet  Google Scholar 

  6. Dinh, V.D.: A study on blowup solutions to the focusing \(L^2\)-supercritical nonlinear fractional Schrödinger equation. J. Math. Phys. 59, 071506 (2018)

    Article  MathSciNet  Google Scholar 

  7. D’avenia, P., Siciliano, G., Squassina, M.: On fractional Choquard equations. Math. Model. Methods Appl. Sci. 25(8), 1447–1476 (2015)

    Article  MathSciNet  Google Scholar 

  8. Elgart, A., Schlein, B.: Mean field dynamics of Boson Stars. Commun. Pure Appl. Math. 60(4), 500–545 (2007)

    Article  MathSciNet  Google Scholar 

  9. Feng, B., Wang, Y.: Sharp thresholds of blow-up and global existence for the Schrödinger equation with combined power-type and Choquard-type nonlinearities. Bound. Value Probl. 2019, 195 (2019)

    Article  Google Scholar 

  10. Feng, B., Zhang, H.: Stability of standing waves for the fractional Schrödinger–Hartree equation. J. Math. Anal. App. 460(1), 352–364 (2018)

    Article  Google Scholar 

  11. Gill, T.S.: Optical guiding of laser beam in nonuniform plasma. Pranama J. Phys. 55, 845–852 (2000)

    Google Scholar 

  12. Guo, B., Huo, Z.: Global well-posedness for the fractional nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 36(2), 247–255 (2010)

    Article  Google Scholar 

  13. Guo, B., Huo, Z.: Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation, ract. Calc. Appl. Anal. 16(1), 226–242 (2013)

    Article  MathSciNet  Google Scholar 

  14. Guo, Z., Sire, Y., Wang, Y., Zhao, L.: On the energy-critical fractional Schrödinger equation in the radial case. Dyn. Parttial Differ. Equ. 15, 265–282 (2018)

    Article  Google Scholar 

  15. Guo, Z., Wang, Y.: Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J. Anal. Math. 124(1), 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gurevich, B., Jeffrey, A., Pelinovsky, E.N.: A method for obtaining evolution equations for nonlinear waves in a random medium. Wave Motion 17(287), 287–295 (1993)

    Article  MathSciNet  Google Scholar 

  17. Iomin, A.: Fractional Schrödinger equation in gravitational optics. Mod. Phys. Lett. A (To appear)

  18. Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A. 268, 298–304 (2000)

    Article  MathSciNet  Google Scholar 

  19. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E. 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  20. Lieb, E.: Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  21. Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147–174 (1987)

    Article  MathSciNet  Google Scholar 

  22. Liu, C.S., Tripathi, V.K.: Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1, 3100–3103 (1994)

    Article  Google Scholar 

  23. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 116–162 (1955)

    MathSciNet  MATH  Google Scholar 

  24. Peng, C., Zhang, Y., Ma, C.: Blow-up dynamics of \(L^2\)-critical inhomogeneous fractional nonlinear Schrödinger equation. Math. Methods Appl. Sci. 41, 1–10 (2019)

    Google Scholar 

  25. Peng, C., Zhao, D.: Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete Contin. Dyn. Syst. B 24(7), 3335–3356 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Saanouni, T.: Remarks on the inhomogeneous fractional nonlinear Schrödinger equation. J. Math. Phys. 57, 081503 (2016)

    Article  MathSciNet  Google Scholar 

  27. Saanouni, T.: Strong instability of standing waves for the fractional Choquard equation. J. Math. Phys. 59, 081509 (2018)

    Article  MathSciNet  Google Scholar 

  28. Saanouni, T.: A note on the fractional Schrödinger equation of Choquard type. J. Math. Anal. Appl. 470(2), 1004–1029 (2019)

    Article  MathSciNet  Google Scholar 

  29. Shen, Z., Gao, F., Yang, M.: Ground states for nonlinear fractional Choquard equations with general non-linearities. Math. Methods Appl. Sci. 39(14), 4082–4098 (2016)

    Article  MathSciNet  Google Scholar 

  30. Sulem, C., Sulem, P.L.: Self-focusing and wave collapse. In: Sulem, C., Sulem, P.L. (eds.) The Nonlinear Schrödinger Equation. Applied Mathematical Sciences, vol. 139, Springer, New York (1999)

  31. Wei, Y.: Comment on Fractional quantum mechanics and Fractional Schrödinger equation. Physical Review B: Condensed Matter and Materials Physics (1998–2015), vol. 93. American Physical Society (2016). https://doi.org/10.1103/physreve.93.066103ff.ffhal-01588657f

  32. Zhu, S.: On the blow-up solutions for the nonlinear fractional Schrödinger equation. J. Differ. Equ. 261, 1506–1531 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Saanouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, one proves Lemma 2.5. Let \(\epsilon >0\) and \(1+\frac{b\chi _{b>0}}{N-2s}<p< p^*\). Take \((u_n)\) a bounded sequence of \(H^s_{rd}.\) Without loss of generality, one assumes that \((u_n)\) converges weakly to zero in \(H^s.\) The purpose is to prove that \(\Vert u_n\Vert _{L^{2p}(|x|^{b}\,\mathrm{{d}}x)}\rightarrow 0.\)

  1. A.

    First case \(-2s<b<0\). Using Hölder estimate, if \((q,q')\) satisfies \(q'|b|<N\), one gets

    $$\begin{aligned} \int _{|x|\le \epsilon }|x|^{b}|u_n|^{2p}\,\mathrm{{d}}x\le & {} \Vert u_n\Vert _{2pq}^{2p}\Vert |x|^{b}\Vert _{q'}\\\le & {} C\Vert u_n\Vert _{2pq}^{2p}\int _0^\epsilon \frac{\mathrm{{d}}t}{t^{-q'b-N+1}}\\\le & {} C\Vert u_n\Vert _{2pq}^{2p}\epsilon ^{N+q'b}. \end{aligned}$$

    Now, since \(p<p^*\), one has \(N+\frac{Nb}{N-p(N-2s)}>0\). Taking \(q:=\frac{N}{p(N-2s)}\) and using Sobolev injections, it follows that there exists \(\mu >0\) such that

    $$\begin{aligned} \int _{|x|\le \epsilon }|x|^{b}|u_n|^{2p}\,\mathrm{{d}}x\le & {} C\Vert u_n\Vert _{H^s}^{2p}\epsilon ^{N+q'b}\\\le & {} C\epsilon ^{N+\frac{Nb}{N-p(N-2s)}}\\\le & {} C\epsilon ^\mu . \end{aligned}$$

    On the other hand, by Sobolev injections,

    $$\begin{aligned} \int _{|x|\ge \epsilon }|x|^{b}|u_n|^{2p}\,\mathrm{{d}}x \le \epsilon ^{b}\Vert u_n\Vert _{2p}^{2p}. \end{aligned}$$

    Since \(\epsilon \) is arbitrary, one obtains \(\int _{\mathbb R^N}|x|^{b}|u_n|^{2p}\,\mathrm{{d}}x\rightarrow 0\) as \(n\rightarrow \infty .\) The proof is complete.

  2. B.

    Second case \(b\ge 0\). Write, using Compact Sobolev injections

    $$\begin{aligned} \int _{|x|\le \epsilon }|x|^{b}|u_n|^{2p}\,\mathrm{{d}}x\le C\Vert u_n\Vert _{2p}^{2p}\rightarrow 0. \end{aligned}$$

    Moreover, with Strauss inequality and Rellich Theorem,

    $$\begin{aligned} \int _{\epsilon \le |x|\le \frac{1}{\epsilon }}|x|^{b}|u_n|^{2p}\,\mathrm{{d}}x\le C\Vert u_n\Vert _{L^\infty (\epsilon \le |x|\le \frac{1}{\epsilon })}^{2(p-1)}\int _{\epsilon \le |x|\le \frac{1}{\epsilon }}|u_n|^2\,\mathrm{{d}}x\rightarrow 0. \end{aligned}$$

    Now, with Strauss inequality

    $$\begin{aligned} \int _{|x|\ge \frac{1}{\epsilon }}|x|^{b}|u_n|^{2p}\,\mathrm{{d}}x&=\int _{|x|\ge \frac{1}{\epsilon }}|x|^{b-(p-1)(N-2s)}(|x|^{\frac{N-2s}{2}}|u_n|)^{2(p-1)}|u_n|^2\,\mathrm{{d}}x\\\le & {} C\int _{|x|\ge \frac{1}{\epsilon }}|x|^{b-(p-1)(N-2s)}|u_n|^2\,\mathrm{{d}}x\\\le & {} C\epsilon ^{(p-1)(N-2s)-b}. \end{aligned}$$

    The proof is achieved because \({b-(p-1)(N-2s)}<0.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saanouni, T., Alharbi, M.G. Fractional Choquard Equations with an Inhomogeneous Combined Non-linearity. Mediterr. J. Math. 19, 108 (2022). https://doi.org/10.1007/s00009-022-02023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-022-02023-4

Keywords

Mathematics Subject Classification

Navigation