Log in

Non-orthogonal Fusion Frames of an Analytic Operator and Application to a One-Dimensional Wave Control System

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we are mainly concerned with a one-dimensional wave control system. We assert the existence of non-orthogonal fusion frames by extending this problem to a theoretical one introduced by Sz. Nagy (Acta Sci Math Szeged 14, 1951). The key idea of this work is based on the estimate inspired from Sz. Nagy (1951) using the spectral analysis method. More precisely, we prove that if the eigenvalues of the unperturbed operator are isolated and with finite multiplicity, we can construct non-orthogonal fusion frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asgari, M.S.: New characterizations of fusion frames \((\)frames of subspaces\()\). Proc. Indian Acad. Sci. Math. Sci. 119, 369–382 (2009)

    Article  MathSciNet  Google Scholar 

  2. Asgari, M.S., Khosravi, A.: Frames and bases of subspaces in Hilbert spaces. J. Math. Anal. Appl. 308, 541–553 (2005)

    Article  MathSciNet  Google Scholar 

  3. Ben Ali, N., Jeribi, A.: On the Riesz basis of a family of analytic operators in the sense of Kato and application to the problem of radiation of a vibrating structure in a light fluid. J. Math. Anal. Appl. 320, 78–94 (2006)

    Article  MathSciNet  Google Scholar 

  4. Cahill, J., Casazza, P.G., Li, S.: Non-orthogonal fusion frames and the sparsity of fusion frame operators. J. Fourier Anal. Appl. 18, 287–308 (2012)

    Article  MathSciNet  Google Scholar 

  5. Casazza, P.G., Kutyniok, G.: Frames of Subspaces. Wavelets, Frames and Operator Theory, Contemporary Mathematics, Volume 345, pp. 87–113. American Mathematical Society, Providence (2004)

  6. Christensen, O.: Frames containing a Riesz basis and approximation of the frame coefficients using finite-dimensional methods. J. Math. Anal. Appl. 199, 256–270 (1996)

    Article  MathSciNet  Google Scholar 

  7. Ellouz, H., Feki, I., Jeribi, A.: On a Riesz basis of exponentials related to the eigenvalues of an analytic operator and application to a non-selfadjoint problem deduced from a perturbation method for sound radiation. J. Math. Phys. 54, 112101 (2013)

    Article  MathSciNet  Google Scholar 

  8. Feki, I., Jeribi, A., Sfaxi, R.: On an unconditional basis of generalized eigenvectors of an analytic operator and application to a problem of radiation of a vibrating structure in a light fluid. J. Math. Anal. Appl. 375, 261–269 (2011)

    Article  MathSciNet  Google Scholar 

  9. Feki, I., Jeribi, A., Sfaxi, R.: On a Schauder basis related to the eigenvectors of a family of non-selfadjoint analytic operators and applications. Anal. Math. Phys. 3, 311–331 (2013)

    Article  MathSciNet  Google Scholar 

  10. Feki, I., Jeribi, A., Sfaxi, R.: On a Riesz basis of eigenvectors of a nonself-adjoint analytic operator and applications. Linear Multilinear Algebra 62, 1049–1068 (2014)

    Article  MathSciNet  Google Scholar 

  11. Guo, B.Z., Chan, K.Y.: Riesz basis generation, eigenvalues distribution, and exponential stability for a Euler–Bernoulli beam with joint feedback control. Rev. Mat. Complut. 14, 205–229 (2001)

    Article  MathSciNet  Google Scholar 

  12. Jeribi, A.: Spectral Theory and Applications of Linear Operators and Block Operator Matrices. Springer, New York (2015)

    Book  Google Scholar 

  13. Jeribi, A.: Denseness. Bases and Frames in Banach Spaces and Applications. De Gruyter, Berlin (2018)

    MATH  Google Scholar 

  14. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)

    MATH  Google Scholar 

  15. Kobayashi, T.: Stabilization of infinite-dimensional undamped second order systems by using a parallel compensator. IMA J. Math. Control Inf. 21, 85–94 (2004)

    Article  MathSciNet  Google Scholar 

  16. Sz. Nagy, B.: Perturbations des transformations linéaires fermées. Acta Sci. Math. Szeged 14, 125–137 (1951)

  17. Xu, G.Q.: Stabilization of string system with linear boundary feedback. Nonlinear Anal. Hybrid Syst. 1, 383–397 (2007)

    Article  MathSciNet  Google Scholar 

  18. Xu, G.Q., Feng, D.X.: The Riesz basis property of a Timoshenko beam with boundary feedback and application. IMA J. Appl. Math. 67, 357–370 (2002)

    Article  MathSciNet  Google Scholar 

  19. Xu, G.Q., Yung, S.P.: Properties of a class of \(C_0\) semigroups on Banach spaces and their applications. J. Math. Anal. Appl. 328, 245–256 (2007)

    Article  MathSciNet  Google Scholar 

  20. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, London (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Feki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellouz, H., Feki, I. & Jeribi, A. Non-orthogonal Fusion Frames of an Analytic Operator and Application to a One-Dimensional Wave Control System. Mediterr. J. Math. 16, 52 (2019). https://doi.org/10.1007/s00009-019-1318-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1318-x

Mathematics Subject Classification

Keywords

Navigation