Log in

In Vivo study of the kinetics of thiamine and its phosphoesters in the deafferented rat cerebellum

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The effects of chemical (CD) and surgical (SD) deafferentation of the cerebellum on different steps of the metabolism of thiamine (Th), thiamine monophosphate (ThMP) and thiamine pyrophosphate (ThPP) were evaluatedin vivo in rats. CD was carried out by i.p. injection of 3-acetylpyridine, followed by harmaline and niacinamide. SD was carried out by complete dissection of the peduncles of the left cerebellar hemisphere. Under steady state condition the radioactivity of Th and its phosphoesters was determined in plasma and whole cerebellum after an i.p. injection of thiazole-[214C]-thiamine (30 μg: 1.25 μCi). Analytical data were processed by using an improved mathematical comparmental model, which allowed the calculation of fractional rate constants (FRC), turnover rates (TR) and turnover times (TT). Both CD and SD caused a significant reduction of TR values for Th phosphorylation to ThPP, dephosphorylation of ThPP to ThMP and Th, and ThMP, but not Th, release. TT for all Th compounds were increased compared to controls, indicating a general slowing of thiamine metabolism in the deafferented cerebellum. These results indicate an imbalance in the thiamine metabolism resulting from the impaired activity of cerebellar neurons. The possible implications of the changes in rate of Th compound turnover with respect to biochemical changes in cerebellar ataxia are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balaban, C.D. (1985). Central neurotoxic effects of intraperitoneally administered 3-acetylpiridine, harmaline and niacinamide in Sprague-Dawley and Long-Evans rats: a critical review of central 3-acetylpiridine neurotoxicity.Brain Res. Rev. 9:21–42.

    Article  CAS  Google Scholar 

  • Bettendorff, L., Grandfils, C., De Rycker, C., and Schoffeniels, E. (1986). Determination of Thiamine and its phosphate esters in human blood, serum at femtomole levels.J. Chromat. 382:297–302.

    Article  CAS  Google Scholar 

  • Bettendorff, L., Schoffeniels, E., Naquet, R., Silva-Barrat, C., Riche, D., and Menini, C. (1989) Phosphorylated thiamine derivatives and cortical activity in the baboon Papio papio.J. Neurochem. 53:80–87.

    Article  PubMed  CAS  Google Scholar 

  • Bettendorff, L., Wins, P., and Lesourd, M. (1994). Subcellular localization and compartmentation of thiamine derivatives an rat brain. Biochim. Biophys. Acta,1222:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Bower, A.J., and Waddington, G. (1981). A simple operative technique for chronically severing the cerebellar peduncles in neonatal rats.J. Neurosc. Meth. 4:181–188.

    Article  CAS  Google Scholar 

  • Butterworth, R.F., Hamel, E., Landreville, F., and Barbeau, A. (1978). Cerebellar ataxia produced by 3-acetylpyridine in rat.Can. J. Neurol. Sci. 5: 131–133.

    PubMed  CAS  Google Scholar 

  • Butterworth, R.F., Hamel, E., Landreville, F., and Barbeau, A. (1979). Amino acid changes in thiamine deficient encephalopathy: some implications for the pathogenesis of Friedreich's ataxia.Can. J. Neurol. Sci. 6:217–222.

    PubMed  CAS  Google Scholar 

  • Butterworth, R.F., Giguère, J.F. and Besnard, A.M. (1985). Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 1. Pyruvate dehydrogenase, complex.Neurochem. Res. 10:1417–1482.

    Article  PubMed  CAS  Google Scholar 

  • Butterworth, R.F., Giguère, J. F., and Besnard, A. M. (1986). Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. α-Ketoglutarate dehydrogenase.Neurochem. Res. 11:567–577.

    Article  PubMed  CAS  Google Scholar 

  • Carson, E.R., Cobelli, L., and Filkelstein, L. (1983).The Mathematical Modeling of Metabolic and Endocrine Systems, Wiley-Interscience, New York.

    Google Scholar 

  • Chan, A.W.K., Schanley, D.L., and Leong, F.W. (1980). The adequacy of thiamine in liquid diets used in animal model of alcoholism.Experientia 36:859–860.

    Article  PubMed  CAS  Google Scholar 

  • Chen C., and Liao, T. (1960). On the histochemical distribution of thiamine in nervous tissue.J. Vitaminol. 6:1–5.

    CAS  Google Scholar 

  • Desclin J. (1974). Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat.Brain Res. 77:365–384.

    Article  PubMed  CAS  Google Scholar 

  • Desclin, J., and Escubi, J. (1974). Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods.Brain Res. 77:349–364.

    Article  PubMed  CAS  Google Scholar 

  • Giguère, J.F., and Butterworth, R.F. (1987). Activities of thiamine-dependent enzymes in two experimental models of thiamine deficiency encephalopathy. 3. Transketolase.Neurochem. Res. 12:305–310.

    Article  PubMed  Google Scholar 

  • Glantz, S.A. (1988),Statistical per Discipline Biomediche, Programma Applicativo, Mac Graw-Hill, Milano.

    Google Scholar 

  • Gurtner, H.P. (1961). Aneurin und Nervenerregung versuche mit35S-markiertem Aneurin und Aneurinantimetaboliten.Helv. Physiol. Pharmacol. Acta,19:1–47.

    Google Scholar 

  • Hakim A.M., and Pappius, H.M. (1981). The effect of thiamine deficiency on local cerebral glucose utilization.Ann. Neurol. 9:334–339.

    Article  PubMed  CAS  Google Scholar 

  • Iizuka, R., Takeda, T., Tanabe, M., and Suwa, N. (1956). Über die histochemischen untersüchungen des vitamin B1 im zentralen nerven system. 1. Methode und verteilung bei normalem zustand.Folia Psychiatr. Neurol. Japon 10:247–252.

    Google Scholar 

  • Itokawa, Y., and Cooper, J.R. (1969). On a relationship between ion transport and thiamine in nervous tissue.Biochem. Pharmacol. 18:545–547.

    Article  PubMed  CAS  Google Scholar 

  • Korbo, L., Andersen, B.B., Ladefoged, O., and Møller, A. (1993). Total numbers of various cell types in rat cerebellar cortex estimated using an unbiased stereological method.Brain Res. 609:262–268.

    Article  PubMed  CAS  Google Scholar 

  • Ljung, L. (1995).System Identification Toolbox: Users Manual, De Mat Works. Inc., Natick, MA.

    Google Scholar 

  • Llinás, R., Walton, K. and Hillman, D.E. (1975). Inferior olive: its role in motor learning.Science 190:1230–1231.

    Article  PubMed  Google Scholar 

  • Martinez-Rodrigucz, R., Arenas Diaz, G., and Carnicero, M.B. (1989). Thiamine-like molecules in the cerebellar cortex of the rat: light and electron microscopic immunocytochemical investigation.J. Neurosc. Res. 23:447–453.

    Article  Google Scholar 

  • McCandless D.W., and Schenker, S. (1968). Encephalopathy of thiamine deficiency: studies of intracerebral mechanism.J. Clin. Invest. 47:2268–2280.

    PubMed  CAS  Google Scholar 

  • Nadi, N.S., Kanter, D., McBride, W.J., and Aprison, M.H. (1977). Effect of 3-acetylpyridine on several putative neurotransmitter aminoacids in the cerebellum and medulla of the rat.J. Neurochem. 28:661–662.

    Article  PubMed  CAS  Google Scholar 

  • Nurnberger J.L., and Gordon M.W. (1957). The cell density of neural tissue; direct counting method and possible application as a biologic referent. In H. Waelsh (Ed)Ultrastructure and Cellular Chemistry of Neural Tissue, Hoerber-Harper Book N. Y. pp. 100–128.

    Google Scholar 

  • Patrini, C., Reggiani, C., Laforenza, U., and Rindi, G. (1988). Blood-brain transport of thiamine monophosphate in the rat: a kinetic studyin vivo.J. Neurochem. 50:90–93.

    Article  PubMed  CAS  Google Scholar 

  • Patrini, C., Perucca, E., Reggiani, C., and Rindi, G. (1993). Effects of phenytoin on thein vivo kinetics of thiamine and its phosphoesters in rat nervous tissues.Brain Res. 628:179–186.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T.L., Mc Lean, J., Perry, T.L. jr., and Hansen, S. (1976). Effects of 3-acetylpyridine on putative neurotransmitter-aminoacids in rat cerebellum.Brain Res 109:632–635.

    Article  PubMed  CAS  Google Scholar 

  • Pincus J.H., and Wells K. (1972). Regional distribution of thiamine dependent enzymes in normal and thiamine deficient rat.Exp. Neurol. 37:495–501.

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis, A. (1993). 3-Acetylpyridine and thiamine deficiency induced cerebellar models and the pathophysiology of ataxia. In P. Trouillas and K. Fuxe (Eds).Serotonin, the Cerebellum, and Ataxia, Raven, New York, pp. 269–289.

    Google Scholar 

  • Paloni, M., Mazzarello, P., Laforenza, U., Caramella, C., and Patrini, C. (1992). Thiamin contents of cerebrospinal fluid, plasma and erythrocytes in cerebellar ataxias.Europ. Neurol. 32:154–158.

    Google Scholar 

  • Randoin, L., and Causeret, J. (1947). Constitution d'un régime alimentaire équilibré pour les jeunes rats blancs destinés au dosage des vitamines A et D par les méthodes biologiques.Bull. Soc. Hyg. Aliment. 35:14–18.

    CAS  Google Scholar 

  • Reggiani C., Patrini C., and Rindi G. (1984). Nervous, tissue thiamine metabolismin vivo. I. Transport of thiamine and thiamine monophosphate from plasma to different brain regions of the rat.Brain Res. 293:319–327.

    Article  PubMed  CAS  Google Scholar 

  • Rindi G., Patrini C., Comincioli V., and Reggiani C. (1979). Thiamine turnover rate in some areas of rat brain and liver: a preliminary note.Experientia 35:498–499.

    Article  PubMed  CAS  Google Scholar 

  • Rindi G., Patrini C., Comincioli V., and Reggiani C. (1980). Thiamine content and turnover rates of some rat nervous regions, using labeled thiamine as a tracer.Brain Res. 181:369–380.

    Article  PubMed  CAS  Google Scholar 

  • Rindi G., Comincioli V., Reggiani C., and Patrini C. (1984). Nervous tissue thiamine metabolismin vivo. II. Thiamine and its phosphoesters dynamics in different brain regions and sciatic nerve of the rat.Brain Res. 293:329–342.

    Article  PubMed  CAS  Google Scholar 

  • Rindi G., Comincioli V., Reggiani C., and Patrini C. (1987). Nervous tissue thiamine metabolismin vivo. III. Influence of ethanol intake on the dynamics of thiamine and its phosphoesters in different brain regions and sciatic nerve of the rat.Brain Res. 413:23–35.

    Article  PubMed  CAS  Google Scholar 

  • Rindi G., Reggiani C., Patrini C., Gastaldi G., and Laforenza U. (1992). Effects of ethanol on thein vivo kinetics of thiamine phosphorylation and dephosphorylation in different organs of rat-II. Acute effects.Alcohol Alcoholism 27:505–522.

    CAS  Google Scholar 

  • Saam II Users Manual, SAAM Institute, University of Washington, Seattle, U.S.A., (1994).

  • Saccomani, M.P., Audoly, S., D'Angiò, L., Sattier, R., and Cobelli, C. (1994). PRIDE: a program to test a priori identificability of linear compartmental models. In M. Blake and T. Soderson (Eds).Proc. SYSID'94 10th IFAC Symposium on System Identification; Danish Automation Society, Copenhagen, vol.3, pp. 25–39.

  • Weller, M., Marini, A.M., and Paul, S.M. (1992). Niacinamide blocks 3-acetylpyridine toxicity of cerebellar granule cellsin vitro.Brain Res. 594:160–164.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nauti, A., Patrini, C., Reggiani, C. et al. In Vivo study of the kinetics of thiamine and its phosphoesters in the deafferented rat cerebellum. Metab Brain Dis 12, 145–160 (1997). https://doi.org/10.1007/BF02674736

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674736

Key words

Navigation