Log in

Pharmacokinetics of methyl parathion: A comparison following single intravenous, oral or dermal administration

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Assessment of the risks posed by the residential use of methyl parathion requires an understanding of its pharmacokinetics after different routes of exposure. Thus, studies were performed using adult female rats to define the pharmacokinetic parameters for methyl parathion after intravenous injection and to apply the described model to an examination of its pharmacokinetics after single oral or dermal exposure. The pharmacokinetics of methyl parathion after intravenous administration (1.5 mg/kg) were best described by a three-compartment model; the apparent volume of the central compartment was 1.45 liters/kg, clearance was 1.85 liters/h/kg and the terminal half-life was 6.6 h with an elimination constant of 0.50 h−1. The apparent oral absorption coefficient for methyl parathion (1.5 mg/kg) was 1.24 h−1, and its oral bioavailability was approximately 20%. The latter likely includes a significant first pass effect. Concentrations of methyl parathion increased during the initial 10–60 min and then declined during the next 15–36 h. After dermal administration (6.25–25 mg/kg), methyl parathion concentrations peaked within 12–26 h and then declined dose dependently. The apparent dermal absorption coefficient was approximately 0.41 h−1, and only two pharmacokinetic compartments could be distinguished. In conclusion, the pharmacokinetics of methyl parathion are complex and route dependent. Also, dermal exposure, because of sustained methyl parathion concentrations, may pose the greatest risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agency for Toxic Substances and Disease Registry. Illegal Use of Methyl Parathion Insecticide (http://www.atsdr.cdc.gov/alerts/961213.html), 1996.

  2. Bledsoe FH, Seymour EQ. Acute pulmonary edema associated with parathion poisoning. Radiology 103:53–56;1972.

    PubMed  Google Scholar 

  3. Braeckman RA, Audenaert F, Willems JL, Belpaire FM, Bogaert MG. Toxicokinetics of methyl parathion and parathion in the dog after intravenous and oral administration. Arch Toxicol 54:71–82;1983.

    PubMed  Google Scholar 

  4. Braeckman RA, Godefroot MG, Blondeel GM, Belpaire FM, Willems JL. Kinetic analysis of methyl parathion in the dog. Arch Toxicol 43:263–271;1980.

    PubMed  Google Scholar 

  5. Carver MP, Riviere JE. Percutaneous absorption and excretion of xenobiotics after topical and intravenous administration to pigs. Fundam Appl Toxicol 13:714–722;1989.

    Article  PubMed  Google Scholar 

  6. Chadwick RW, Copeland MF, Froehlich R, Cooke N, Whitehouse DA. Interaction between γ-hexachlorocyclohexane and the gastrointestinal microflora and their effects on the absorption, biotransformation and excretion of parathion by the rat. J Agric Food Chem 32:755–759;1984.

    Article  Google Scholar 

  7. Chambers JE, Chambers HW, Snawder JE. Target site bioactivation of the neurotoxic organophosphorus insecticide parathion in partially hepatectomized rats. Life Sci 48:1023–1029;1991.

    Article  PubMed  Google Scholar 

  8. Chang RR, Jarman WM, Hennings JA. Sample cleanup by solid-phase extraction for the ultratrace determination of polychlorinated dibenzo-p-dioxins and dibenzofurans in biological samples. Anal Chem 65:2420–2427;1993.

    PubMed  Google Scholar 

  9. Chang SK, Williams PL, Dauterman WC, Riviere JE. Percutaneous absorption, dermatopharmacokinetics and related bio-transformation studies of carbaryl, lindane, malathion, and parathion in isolated perfused porcine skin. Toxicology 91:269–280;1994.

    PubMed  Google Scholar 

  10. Costa LG. Basic toxicology of pesticides. Occup Med 12:251–268;1997.

    PubMed  Google Scholar 

  11. De Bleecker J, Willems J, Van Den Neucker K, De Reuck J, Vogelaers D. Prolonged toxicity with intermediate syndrome after combined parathion and methyl parathion poisoning. J Toxicol Clin Toxicol 30:333–349;1992.

    PubMed  Google Scholar 

  12. De Potter M, Muller R, Willems J. A method for the determination of some organophosphorus insecticides in human serum. Chromatographia 11:220–222;1978.

    Google Scholar 

  13. De Schryver E, De Reu L, Belpaire F, Willems J. Toxicokinetics of methyl paraoxon in the dog. Arch Toxicol 59:319–322;1987.

    PubMed  Google Scholar 

  14. Dulaney MD Jr, Rockhold RW, Porter AC, Hoskins B, Ho IK. Changes in drinking activity, urine volume and urinary electrolytes after intracerebroventricular administration of diisopropylfluorophosphate. J Pharmacol Exp Ther 250:202–209;1989.

    PubMed  Google Scholar 

  15. Durham WF, Wolfe HR, Elliot JW. Absorption and excretion of parathion by spraymen. Arch Environ Health 24:381–387;1972.

    PubMed  Google Scholar 

  16. Eigenberg DA, Pazdernik TL, Doull J. Hemoperfusion and pharmacokinetic studies with parathion and paraoxon in the rat and dog. Drug Metab Dispos 11:366–370;1983.

    PubMed  Google Scholar 

  17. Esteban E, Rubin C, Hill R, Olson D, Pearce K. Association between indoor residential contamination with methyl parathion and urinary para-nitrophenol. J Expo Anal Environ Epidemiol 6:375–387;1996.

    PubMed  Google Scholar 

  18. Gaines TB. The acute toxicology of pesticides to rats. Toxicol Appl Pharmacol 2:88–99;1960.

    PubMed  Google Scholar 

  19. Garcia-Repetto R, Martinez D, Repetto M. Biodisposition study of the organophosphorus pesticide, methyl-parathion. Bull Environ Contam Toxicol 59:901–908;1997.

    Article  PubMed  Google Scholar 

  20. George J, Andrade C, Thangam J. Delayed effects of acute oral and chronic inhalational exposure to methylparathion on learning and memory in rats. Indian J Exp Biol 30:819–822;1992.

    PubMed  Google Scholar 

  21. Grissom RE Jr, Brownie C, Guthrie FE. In vivo and in vitro dermal penetration of lipophilic and hydrophilic pesticides in mice. Bull Environ Contam Toxicol 38:917–924;1987.

    Article  PubMed  Google Scholar 

  22. Hayes WJ Jr, Funckes AJ, Hartwell WV. Dermal exposure of human volunteers to parathion. Arch Environ Health 8:829–833;1964.

    Google Scholar 

  23. Hollingworth RM, Metcalf RL, Fukuto TR. The selectivity of sumithion compared with methylparathion. Metabolism in the white mouse. J Agric Food Chem 15:242–249;1967.

    Article  Google Scholar 

  24. Hussain M, Yoshida K, Atiemo M, Johnston D. Occupational exposure of grain farmers to carbofuran. Arch Environ Contam Toxicol 19:197–204;1990.

    Article  PubMed  Google Scholar 

  25. Kao J, Carver MP. Cutaneous metabolism of xenobiotics. Drug Metab Rev 22:363–410;1990.

    PubMed  Google Scholar 

  26. Kramer RE, Wellman SE, Zhu H, Rockhold RW, Baker RC. A comparison of cholinesterase activity after intravenous, oral or dermal administration of methyl parathion. J Biomed Sci 9:140–148;2002.

    Article  PubMed  Google Scholar 

  27. Lacorte S, Barcelo D. Determination of parts per trillion levels of organophosphorus pesticides in groundwater by automated on-line liquid-solid extraction followed by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry using positive and negative ion modes of operation. Anal Chem 68:2464–2470;1996.

    Article  PubMed  Google Scholar 

  28. Miyamoto J, Sato Y, Kadota T, Fu**ami A, Endo M. Studies on the mode of action of organophosphorus compounds. 1. Metabolic fate of P32 labeled sumithion and methylparathion in guinea pig and white rat. Agric Biol Chem 27:381–389;1963.

    Google Scholar 

  29. National Technical Information Service. PB277-077. Springfield, National Technical Information Service.

  30. Neal RA. Studies on the metabolism of diethyl 4-nitrophenyl phosphorothionate (parathion) in vitro. Biochem J 103:183–191;1967.

    PubMed  Google Scholar 

  31. Okonek S, Kilbinger H. Determination of acetylcholine, nitrostigmine and acetylcholinesterase activity in four patients with severe nitrostigmine (E 605 forte) intoxication. Arch Toxicol 32:97–108;1974.

    Article  PubMed  Google Scholar 

  32. Pena-Egido MJ, Rivas-Gonzalo JC, Marino-Hernandez EL. Toxicokinetics of parathion in the rabbit. Arch Toxicol 61:196–200;1988.

    Article  PubMed  Google Scholar 

  33. Qiao GL, Riviere JE. Significant effects of application site and occlusion on the pharmacokinetics of cutaneous penetration and biotransformation of parathion in vivo in swine. J Pharm Sci 84:425–432;1995.

    PubMed  Google Scholar 

  34. Qiao GL, Williams PL, Riviere JE. Percutaneous absorption, biotransformation and systemic disposition of parathion in vivo in swine. 1. Comprehensive pharmacokinetic model. Drug Metab Dispos 22:459–471;1994.

    PubMed  Google Scholar 

  35. Reifenrath WG, Chellquist EM, Shipwash EA, Jederberg WW, Krueger GG. Percutaneous penetration in the hairless dog, weanling pig and grafted athymic mouse: Evaluation of models for predicting skin penetration in man. Br J Dermatol 111(suppl 27):123–135;1984.

    Google Scholar 

  36. Senanayake N, Karalliedde L. Neurotoxic effects of organophosphorus insecticides: An intermediate syndrome. N Engl J Med 316:761–763;1987.

    PubMed  Google Scholar 

  37. Spear RC, Popendorf WJ, Leffingwell JT, Milby TH, Davies JE, Spencer WF. Fieldworkers' response to weathered residues of parathion. J Occup Med 19:406–410;1977.

    PubMed  Google Scholar 

  38. Tsachalinas D, Logaras G, Paradelis A. Observations on 246 cases of acute poisoning with parathion in Greece. Eur J Toxicol 4:1–8;1971.

    Google Scholar 

  39. United States Environmental Protection Agency, Office of Pesticide Programs. Illegal Indoor Use of Methyl Parathion (http://www.epa.gov/pesticides/citizens/methyl.htm), 2000.

  40. Ware GW, Morgan DP, Estesen BJ, Cahill WP. Establishment of reentry intervals for organophosphate-treated cotton fields based on human data. 3. 12–72 hours post-treatment exposure to monocrotophos, ethyl- and methyl-parathion. Arch Environ Contam Toxicol 3:289–306;1975.

    Article  PubMed  Google Scholar 

  41. Wester RC, Quan D, Maibach HI. In vitro percutaneous absorption of model compounds glyphosate and malathion from cotton fabric into and through human skin. Food Chem Toxicol 34:731–735;1996.

    PubMed  Google Scholar 

  42. Wolfe HR, Armstrong JF, Staiff DC, Comer SW, Durham WF. Exposure of apple thinners to parathion residues. Arch Environ Contam Toxicol 3:257–267;1975.

    PubMed  Google Scholar 

  43. Wolff MS, McConnell R, Cedillo L, Rivera M. Dermal levels of methyl-parathion, organochlorine pesticides and acetylcholinesterase among formulators. Bull Environ Contam Toxicol 48:671–678;1992.

    Article  PubMed  Google Scholar 

  44. Zhang HX, Sultatos LG. Biotransformation of the organophosphorus insecticides parathion and methyl parathion in male and female rat livers perfused in situ. Drug Metab Dispos 19:473–477;1991.

    PubMed  Google Scholar 

  45. Zhu H, Rockhold RW, Baker RC, Kramer RE, Ho IK. Effects of single or repeated dermal exposure to methyl parathion on behavior and blood cholinesterase activity in rats. J Biomed Sci 8:467–474;2001.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, R.E., Wellman, S.E., Rockhold, R.W. et al. Pharmacokinetics of methyl parathion: A comparison following single intravenous, oral or dermal administration. J Biomed Sci 9, 311–320 (2002). https://doi.org/10.1007/BF02256586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256586

Key Words

Navigation