Log in

The hydrothermal system of Nevado del Ruiz volcano, Colombia

  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Hot springs and steam vents on the slopes of Nevado del Ruiz volcano provide evidence regarding the nature of hydrothermal activity within the summit and flanks of the volcano. At elevations below 3000 m, alkali-chloride water is discharged from two groups of boiling springs and several isolated warm springs on the western slope of Nevado del Ruiz. Chemical and isotopic geothermometers suggest that the boiling springs are fed by an aquifer having a subsurface equilibration temperature of at least 175°C, and the sampled warm spring is fed by an aquifer having a subsurface equilibration temperature near 150°C. Similarities in conservative solute ratios (e.g., B/Cl) indicate that the alkali-chloride waters may be related to a single reservoir at depth. Isotopic ratios of hydrogen and oxygen indicate that recharge for the alkali-chloride aquifers comes mostly from higher elevations on the volcano. Steam vents and steam-heated bicarbonate-sulfate springs at higher elevations, along a linear structural trend with the alkali-chloride springs, may be derived partly from the alkali-chloride water at depth by boiling. Steam from the vents (84°C) yields a gas geothermometer temperature of 209°C. Acid-sulfate-chloride and acid-sulfate waters are discharged widely from warm springs above 3000 m on the northern and eastern slopes of Nevado del Ruiz. Similarities in B/Cl and SO4/Cl ratios suggest that the acid waters are mixtures of water from an acid-sulfate-chloride reservoir with various proportions of shallow, dilute groundwater. The major source of sulfate, halogens, and acidity for the acid waters may be high-temperature magmatic gases. Available data on hot spring temperatures and compositions indicate that they have remained fairly stable since 1968. However, the eruption of November 13, 1985 apparently caused an increase in sulfate concentration in some of the acid springs that peaked about a year after the eruption. Long-term monitoring of hot spring compositions over many years will be required to better define the effects of volcanic activity on the Nevado del Ruiz hydrothermal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arango EE, Buitrago AJ, Cataldi R, Ferrara GC, Panichi C, Villegas VJ (1970) Preliminary study on the Ruiz Geothermal Project (Colombia). Geothermics, Special Issue 2:43–56

    Google Scholar 

  • Bigeleisen J, Perlman ML, Prosser HC (1952) Converison of hydrogenic materials to hydrogen for isotopic analysis. Anal Chem 24:1356–1357

    Google Scholar 

  • Brantley SL, Borgia A, Rowe G, Fernandez JF, Reynolds JR (1987) Poas volcano crater acts as a condenser for acid metal-rich brine. Nature 330:470–472

    Google Scholar 

  • CHEC (Central Hidroelectrica de Caldas) (1983) Investigacion geotermica, macizo volcanico del Ruiz, Vol. IV (Geoquimica, geoquimica isotopica, and hidrologia). Ministerio de Minas y Energia, Bogota, 252 pp

    Google Scholar 

  • Chiba H, Sakai H (1985) Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures. Geochim Cosmochim Acta 49:993–1000

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465): 1702–1703

    Google Scholar 

  • Craig H, Lupton JE, Horibe Y (1978) A mantle helium component in circum-Pacific volcanic gases: Hakone, the Marianas and Mount Lassen. In: Alexander EC, Ozima M (eds) Terrestrial rare gases. Cent Acad Publ, Japan

    Google Scholar 

  • D'Amore F, Panichi C (1980) Evaluation of deep temperatures of hydrothermal systems by a new gas geothermometer. Geochim Cosmochim Acta 44:549–556

    Google Scholar 

  • Ellis AJ, Mahon WAJ (1977) Chemistry and geothermal systems. Academic Press, New York, 392 pp

    Google Scholar 

  • Epstein S, Mayeda TK (1953) Variation of18O content of water from natural sources. Geochim Cosmochim Acta 4:213–224

    Google Scholar 

  • Eriksson E (1983) Stable isotopes and tritium in precipitation. In: Guidebook on nuclear techniques in hydrology (1983 Edn). IAEA Technical Report Series 91:19–34

    Google Scholar 

  • Fouillac C, Michard G (1981) Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics 10:55–70

    Google Scholar 

  • Fournier RO (1979) A revised equation for the Na/K geothermometer. Geotherm Resources Council Transac 3:221–224

    Google Scholar 

  • Fournier RO (1981) Application of water geochemistry to geothermal exploration and reservoir engineering. In: Rybach L, Muffler LJP (eds) Geothermal systems: principles and case histories. John Wiley and Sons, New York, pp 109–143

    Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Google Scholar 

  • Fournier RO, Potter RW II (1979) Magnesium correction to the Na-K-Ca chemical geothermometer. Geochim Cosmochim Acta 43:1543–1550

    Google Scholar 

  • Gerlach TM, Casadevall TJ (1986) Evaluation of gas data from high-temperature fumaroles at Mount St. Helens, 1980–1982. J Volcanol Geotherm Res 28:107–140

    Google Scholar 

  • Giggenbach WF (1975) Variations in the carbon, sulfur, and chlorine contents of volcanic gas discharges from White Island, New Zealand. Bull Volc 39:1–13

    Google Scholar 

  • Goff FE, Shevenell L, Gardner JN, Vuataz FD, Grigsby CO (1988) The hydrothermal outflow plume of Valles Caldera, New Mexico, and a comparison with other outflow plumes. J Geophys Res (in press)

  • Herd DG, and the Comite de Estudios Vulcanologicos (1986) The 1985 Ruiz volcano disaster. EOS Trans. Amer Geophys Union 67:457–460

    Google Scholar 

  • Holt BD (1977) Preparation of carbon dioxide from sulfates, sulfur dioxide, air, and water for determination of oxygen isotope ratio. Anal Chem 49:1664–1667

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (1975) Environmental isotope data no. 5: World survey of isotope concentration in precipitation (1970–1971). IAEA Tech Report Ser 165:198

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (1979) Environmental isotope data no. 6: World survey of isotope concentration in precipitation (1972–1975). IAEA Tech Report Ser 192:116

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (1983) Environmental isotope data no. 7: World survey of isotope concentration in precipitation (1976–1979). IAEA Tech Report Ser 226:140

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (1986) Environmental isotope data no. 8: World survey of isotope concentration in precipitation (1980–1983). IAEA Tech Report Ser 264:128

    Google Scholar 

  • Jaramillo JM (1980) Petrology and geochemistry of the Nevado del Ruiz volcano, Colombia, Northern Andes. Ph D thesis, University of Houston, p 167

  • Kennedy BM, Reynolds JR, Smith SP, Truesdell AH (1987) Helium isotopes: Lower Geyser Basin, Yellowstone National Park. J Geophys Res 92:12477–12480

    Google Scholar 

  • Kiyosu Y, Kurahashi M (1983) Origin of sulfur species in acid sulfate-chloride thermal waters, northeastern Japan. Geochim Cosmochim Acta 47:1237–1245

    Google Scholar 

  • Krueger AJ (1986) The sulfur dioxide content of the Ruiz eruptions. EOS Trans Amer Geophys Union 67:403

    Google Scholar 

  • Lowe DR, Williams SN, Leigh H, Connor CB, Gemmell JB, Stoiber RE (1986) Lahars initiated by the 13 November 1985 eruption of Nevado del Ruiz, Colombia. Nature 324:51–53

    Google Scholar 

  • Lyon GL, Hulston JR (1984) Carbon and hydrogen isotopic compositions of New Zealand geothermal gases. Geochim Cosmochim Acta 48:1161–1172

    Google Scholar 

  • Matsuo S, Suzuki M, Mizutani Y (1978) Nitrogen to argon ratio in volcanic gases. In: Alexander EC, Ozima M (eds) Terrestrial rare gases. Cent Acad Publ, Japan, pp 17–25

    Google Scholar 

  • McCrea JM (1950) On the isotope chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Google Scholar 

  • McKenzie WF, Truesdell AH (1977) Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes. Geothermics 5:51–61

    Google Scholar 

  • Naranjo JL, Sigurdsson H, Carey SN, Fritz W (1986) Eruption of the Nevado del Ruiz volcano, Colombia, on 13 November 1985: Tephra fall and lahars. Science 233:961–963

    Google Scholar 

  • Noguchi K, Kamiya H (1963) Prediction of volcanic eruption by measuring the chemical composition and amounts of gases. Bull Volc 26:367–378

    Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. John Wiley and Sons, New York, pp 501–567

    Google Scholar 

  • Pearson FJ, Truesdell AH (1978) Tritium in the waters of Yellowstone National Park. US Geol Surv Open-file rep 78–701:327–329

    Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chloride stable isotope fractionation among gaseous molecules. Ann Rev Earth Planet Sci 5:65–110

    Google Scholar 

  • Rimstidt JD, Barnes HL (1980) The kinetics of silica-water reactions. Geochim Cosmochim Acta 44:1683–1700

    Google Scholar 

  • Rust FE, Stevens CM (1980) Carbon kinetic isotopic effect in the oxidation of methane by hydroxyl. Int J Chem Kinet 12:371–377

    Google Scholar 

  • Sano Y, Wakita H, Williams SN (1989) Helium isotope anomaly in Nevado del volcano, Colombia: Implications for volcanic hydrothermal systems. J Volc Geotherm Res (in press)

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters. In: Valley JW, Taylor HP, Jr, O'Neil JR (Eds), Stable Isotopes in High Temperature Geological Processes. Rev Mineral 16:165–184

    Google Scholar 

  • Thouret J-C, Vatin-Perignon N, Cantagrel JM, Salinas R, Murcia A (1985) Le Nevado el Ruiz (Cordillère Centrale des Andes de Colombie): Stratigraphie, structures et dynamisme d'un appareil volcanique andésitique, compose et polygénique. Rev Geogr Phys Geol Dyn 26:257–271

    Google Scholar 

  • Truesdell AH, Nathenson M, Rye RO (1977) The effects of subsurface boiling and dilution on the isotopic composition of Yellowstone thermal waters. J Geophys Res 82(26): 3694–3703

    Google Scholar 

  • Vuataz FD, Goff FE (1986) Isotope geochemistry of thermal and nonthermal waters in the Valles Caldera, Jemez Mountains, Northern New Mexico. J Geophys Res 91:1835–1853

    Google Scholar 

  • White DE (1957) Thermal waters of volcanic origin. Geol Soc Amer Bull 68:1637–1658

    Google Scholar 

  • Williams SN, Stoiber RE, Garcia CN, Londono CA, Gemmell JB, Lowe DR, Connor CB (1986) Eruption of the Nevado del Ruiz Volcano, Colombia, on 13 November 1985: Gas flux and fluid geochemistry. Science 233:964–967

    Google Scholar 

  • Williams SN, Sano Y, Wakita H (1987) Helium-3 emission from Nevado del Ruiz volcano, Colombia. Geophys Res Lett 14:1035–1038

    Google Scholar 

  • Williams SN, Sturchio NC, Calvache ML, Mendez R, Londono A, Garcia N (1989) Sulfur dioxide from Nevado del Ruiz volcano, Colombia: Total flux and isotopic constraints on its origin. J Volc Geotherm Res (in press)

  • Young RH, Williams SN, Calvache ML (1987) Similar temporal variations in petrography and eruption dynamics of nine most recent eruptions of Nevado del Ruiz volcano, Colombia. Geol Soc Amer [Abst with Prog] 19:903

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturchio, N.C., Williams, S.N., Garcia, N.P. et al. The hydrothermal system of Nevado del Ruiz volcano, Colombia. Bull Volcanol 50, 399–412 (1988). https://doi.org/10.1007/BF01050639

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050639

Keywords

Navigation