Log in

Characteristic solutes in geothermal water from the Rehai hydrothermal system, Southwestern China

  • Special Issue on Geohtermal Energy
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Rehai, a high-temperature hydrothermal system located in the southern part of the Tengchong volcanic geothermal area of Yunnan Province, is characterized by intensive hydrothermal activities. The hot springs at Rehai that have been sampled so far are Na-HCO3-Cl or Na-HCO3 springs except for the one at Diretiyanqu (experience geothermal area) which is an acid sulfate spring. As typical characteristic solution constituents in high-temperature hydrothermal systems with magma as heat source, Cl, B and As in the Rehai geothermal waters originate mainly from the addition of magmatic fluid. However, both the mixing of magmatic fluid and the dissolution of reservoir hostrocks contribute to the enrichment of fluoride in the Rehai geothermal waters, although their fluoride concentrations are primarily controlled by the solubility of fluorite as indicated by a clear negative relation between solution fluoride and calcium concentrations. The much higher concentration of SO4 2− in the Diretiyanqu Spring as compared to the other springs outcrop** at Rehai implies a quite different geochemical genesis for this spring. The H2S-rich vapor, separated from the deep geothermal fluid during boiling process (i.e., adiabatic cooling), can ascend to shallow aquifers where it is mixed with cold groundwaters and oxidized. Acid sulfate-rich hot springs are generally formed in this manner although only one spring of this type has been sampled during the field investigation of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Appelo, C. A. J., Postma, D., 1996. Geochemistry Groundwater and Pollution. Balkema, Rotterdam

    Google Scholar 

  • Arnórsson, S., Andresdottir, A., 1995. Processes Controlling the Distribution of Boron and Chlorine in Natural Waters in Iceland. Geochimica et Cosmochimica Acta, 59: 4125–4146

    Article  Google Scholar 

  • Baba, A., Sözbilir, H., 2012. Source of Arsenic Based on Geological and Hydrogeochemical Properties of Geothermal Systems in Western Turkey. Chemical Geology, 334: 364–377

    Article  Google Scholar 

  • Bai, D. H., Liao, Z. J., Zhao, G. Z., et al., 1994. The Inference of Magmatic Heat-Source beneath the Rehai (Hot Sea) Field of Tengchong from the Result of Magnetotelluric Sounding. Chinese Science Bulletin, 39: 572–577

    Google Scholar 

  • Ballantyne, J. M., Moore, J. N., 1988. Arsenic Geochemistry in Geothermal Systems. Geochimica et Cosmochimica Acta, 52: 475–483

    Article  Google Scholar 

  • Browne, P., Rodgers, K. A., 2006. Occurrence and Significance of Anomalous Chloride Waters at the Orakei Korako Geothermal Field, Taupo Volcanic Zone, New Zealand. Geothermics, 35(3): 211–220

    Article  Google Scholar 

  • Capaccioni, B., Aguilera, F., Tassi, F., et al., 2011. Geochemical and Isotopic Evidences of Magmatic Inputs in the Hydrothermal Reservoir Feeding the Fumarolic Discharges of Tacora Volcano (Northern Chile). Journal of Volcanology and Geothermal Research, 208(3/4): 77–85

    Article  Google Scholar 

  • Dotsika, E., Poutoukis, D., Michelot, J. L., et al., 2006. Stable Isotope and Chloride, Boron Study for Tracing Sources of Boron Contamination in Groundwater: Boron Contents in Fresh and Thermal Water in Different Areas in Greece. Water Air and Soil Pollution, 174: 19–32

    Article  Google Scholar 

  • Du, J. G., Liu, C. Q., Fu, B. H., et al., 2005. Variations of Geothermometry and Chemical-Isotopic Compositions of Hot Spring Fluids in the Rehai Geothermal Field, Southwestern China. Journal of Volcanology and Geothermal Research, 142: 243–261

    Article  Google Scholar 

  • Gao, Q. W., Fan, S. Q., 1992. Geochemical Characteristics of Geothermal Fluid in the Active Area of the Tengchong Modern Volcanoes. J. **an College Geol., 14(3): 40–44 (in Chinese)

    Google Scholar 

  • Giggenbach, W. F., Guern, F. L., 1976. The Chemistry of Magmatic Gases from Erta’Ale, Ethiopia. Geochimica et Cosmochimica Acta, 40(1): 25–30

    Article  Google Scholar 

  • Guo, Q. H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27: 1887–1898

    Article  Google Scholar 

  • Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215: 61–73

    Article  Google Scholar 

  • Guo, Q. H., Wang, Y. X., Liu, W., 2009. Hydrogeochemistry and Environmental Impact of Geothermal Waters from Yangyi of Tibet, China. Journal of Volcanology and Geothermal Research, 180(1): 9–20

    Article  Google Scholar 

  • Guo, Q. H., Wang, Y. X., Liu, H., 2007. Major Hydrogeochemical Processes in the Two Reservoirs of the Yangba**g Geothermal Field. Journal of Volcanology and Geothermal Research, 166: 255–268

    Article  Google Scholar 

  • Gunnarsson, I., Arnórsson, S., 2005. Impact of Silica Scaling on the Efficiency of Heat Extraction from High-Temperature Geothermal Fluids. Geothermics, 34(3): 320–329

    Article  Google Scholar 

  • Jiang, C. S., Zhou, R. Q., Yao, X. Z., 1998. Fault Structure of Tengchong Volcano. J. Seismol. Res., 21(4): 330–336 (in Chinese with English Abstract)

    Google Scholar 

  • Liao, Z. J., Zhao, P., 1999. Yunnan-Tibet Geothermal Belt-Geothermal Resources and Case Histories. Science Press, Be**g (in Chinese with English Abstract)

    Google Scholar 

  • Liao, Z. J., Shen, M. Z., Guo, G. Y., 1991. Characteristics of the Geothermal Reservoir in the Rehai (Hot Sea) Field in Tengchong County, Yunnan Province. Acta Geol. Sin., 65: 73–85 (in Chinese with English Abatract)

    Google Scholar 

  • Nordstrom, D. K., McCleskey, R. B., Ball, J. W., 2009. Sulfur Geochemistry of Hydrothermal Waters in Yellowstone National Park: IV Acid-Sulfate Waters. Applied Geochemistry, 24: 191–207

    Article  Google Scholar 

  • Peng, X. T., Jones, B., 2012. Rapid Precipitation of Silica (Opal-A) Disguises Evidence of Biogenicity in High-Temperature Geothermal Deposits: Case Study from Dagunguo Hot Spring, China. Sedimentary Geology, 257: 45–62

    Article  Google Scholar 

  • Rudnick, J., Guo, H., Jasnow, D., 1988. Finite-Size Scaling and the Renormalization Group. Current Physics-Sources and Comments, 2: 47–67

    Article  Google Scholar 

  • Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517–568

    Article  Google Scholar 

  • Shangguan, Z. G., Zhao, C. P., Li, H. Z., et al., 2005. Evolution of Hydrothermal Explosions at Rehai Geothermal Field, Tengchong Volcanic Region, China. Geothermics, 34: 518–526

    Article  Google Scholar 

  • Tong, W., Zhang, M. T., 1989. Geothermics in Tengchong. Science Press, Be**g (in Chinese with English Abstract)

    Google Scholar 

  • Vala Ragnarsdóttir, K., Walther, J. V., 1983. Pressure Sensitive “Silica Geothermometer” Determined from Quartz Solubility Experiments at 250 °C. Geochimica et Cosmochimica Acta, 47(5): 941–946

    Article  Google Scholar 

  • Verma, P. S., Santoyo, E., 1997. New Improved Equations for Na/K, Na/Li and SiO2 Geothermometers by Outlier Detec tion and Rejiection. Journal of Volcanology and Geothermal Research, 79: 9–23

    Article  Google Scholar 

  • Wang, S. F., Pang, Z. H., Liu, J. R., et al., 2013. Origin and Evolution Characteristics of Geothermal Water in the Niutuozhen Geothermal Field, North China Plain. Journal of Earth Science, 24(6): 891–902

    Article  Google Scholar 

  • Wei, H., Sparks, R. S. J., Liu, R., et al., 2003. Three Active Volcanoes in China and Their Hazards. J. Asian Earth Sci., 21: 515–526

    Article  Google Scholar 

  • WHO, 1993. Guidelines for Drinking-water Quality, http://www.who.int/watersanitationhealth/dwq/gdwq2v1/en/index.html

    Google Scholar 

  • White, D. E., Brannock, W. W., Murata, K. J., 1956. Silica in Hot-Spring Waters. Geochimica et Cosmochimica Acta, 10: 27–59

    Article  Google Scholar 

  • Wu, G. J., Hu, X. Y., Huo, G. P., et al., 2012. Geophysical Exploration for Geothermal Resources: An Application of MT and CSAMT in Jiangxia, Wuhan, China. Journal of Earth Science, 23(5): 757–767

    Article  Google Scholar 

  • Xu, Q., Li, C. H., Wang, J., et al., 1997. Geothermal Resources in Tengchong Region, Yunnan Province. Geol. Geochem, 4: 77–84 (in Chinese)

    Google Scholar 

  • Yan, K., Wan, D. B., 1998. Study on Mechanism and Chemical Characteristics of Hot Spring Swarms in Tengchong Hot Sea. J. Seismol. Res., 21: 388–396 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, G. P., Liu, C. Q., Liu, H., et al., 2008. Geochemistry of the Rehai and Ruidian Geothermal Waters, Yunnan Province, China. Geothermics, 37: 73–83

    Article  Google Scholar 

  • Zhang, Z. F., Liu, S. B., Zhao, F. S., 1987. Geochemistry of Thermal Waters in the Tengchong Volcanic Geothermal Area, West Yunnan Province, China. Geothermics, 16: 169–179

    Article  Google Scholar 

  • Zhao, P., Liao, Z. J., Guo, G. Y., et al., 1996. Steam Quantitative Analysis and Its Implication in the Rehai Geothermal Field, Tengchong. Chinese Science Bulletin, 41: 501–505

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghai Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Guo, Q., Zhang, X. et al. Characteristic solutes in geothermal water from the Rehai hydrothermal system, Southwestern China. J. Earth Sci. 26, 140–148 (2015). https://doi.org/10.1007/s12583-015-0600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-015-0600-5

Key Words

Navigation