Log in

Effects of the Nonequilibrium Model and the Discharge Frequency on an Argon Inductively Coupled Plasma Simulation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Numerical simulations of argon inductively coupled plasmas (ICPs) were carried out by using the magneto-hydrodynamic equations and considering the different thermodynamic models inside the 10-kW ICP torch. The distribution characteristics of the flow velocity and the temperature were obtained and analyzed under thermodynamic equilibrium and nonequilibrium conditions, respectively. The effects of different typical discharge frequencies on the flow-field properties of the nonequilibrium argon ICP flow were also studied. The results indicate that the temperature distribution simulated by using the nonequilibrium model is more consistent with the experimental data than the one modeled by using the equilibrium model. The higher the discharge frequency is, the lower the maximum velocity and temperature of the nonequilibrium ICP flow are found to be.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Fujita, M. Mizuno, K. Ishida and T. Ito, J. Thermophys. Heat Tr. 22, 685 (2008).

    Article  Google Scholar 

  2. T. Suzuki, K. Fujita, K. Ando and T. Sakai, J. Thermophys. Heat Tr. 22, 382 (2008).

    Article  Google Scholar 

  3. M. Hirakawa et al., Trans. Japan Soc. Aero. Space Sci. 45, 217 (2003).

    Article  ADS  Google Scholar 

  4. D. Yan, Acta Optica Sinica 10, 533 (1990).

    Google Scholar 

  5. K. Yamada et al., J. Spacecraft Rockets. 52, 275 (2015).

    Article  ADS  Google Scholar 

  6. F. Panerai and O. Chazot, Mater. Chem. Phys. 134, 597 (2012).

    Article  Google Scholar 

  7. J. H. Seo, J.-M. Park and S. H. Hong, J. Korean Phys. Soc. 45, 94 (2009).

    Article  Google Scholar 

  8. R. C. Miller and R. J. Ayen, J. Appl. Phys. 40, 5260 (1969).

    Article  ADS  Google Scholar 

  9. J. Mostaghimi, P. Proulx and M. I. Boulos, J. Appl. Phys. 61, 1753 (1987).

    Article  ADS  Google Scholar 

  10. J. Mostaghimi and M. I. Boulos, J. Appl. Phys. 68, 2643 (1990).

    Article  ADS  Google Scholar 

  11. J. H. Park and S. H. Hong, J. Korean Phys. Soc. 31, 753 (1997).

    Google Scholar 

  12. D. C. Kwon et al., J. Korean Phys. Soc. 50, 40 (2007).

    Article  Google Scholar 

  13. J. H. Seo, J-M. Park and S. H. Hong, J. Korean Phys. Soc. 45, 94 (2009).

    Article  Google Scholar 

  14. S. Park, J-M. Choe, H-J. Roh and G-H. Kim, J. Korean Phys. Soc. 64, 1819 (2014).

    Article  ADS  Google Scholar 

  15. J. S. Nam, M. Y. Lee, J. H. Seo and G. H. Kim, J. Korean Phys. Soc. 72, 755 (2018).

    Article  ADS  Google Scholar 

  16. M. I. Boulos, IEEE Trans. Plasma Sci. 4, 298 (1976).

    Article  ADS  Google Scholar 

  17. J. Mostaghimi and M. I. Boulos, Plasma Chem. Plasma Process. 9, 25 (1989).

    Article  Google Scholar 

  18. S. W. Xue, P. Proulx and M. I. Boulos, J. Phys. D: Appl. Phys. 34, 1897 (2001).

    Article  ADS  Google Scholar 

  19. A. Munafò, S. A. Alfuhaid, J. L. Cambier and M. Panesi, J. Appl. Phys. 118, 133303 (2015).

    Article  ADS  Google Scholar 

  20. A. Munafò, J. L. Cambier and M. Panesi, Phys. Plasmas 42, (2016).

  21. W. Zhang, A. Lani and M. Panesi, Phys. Plasmas 23, 073512 (2016).

    Article  ADS  Google Scholar 

  22. V. Colombo, E. Ghedini and P. Sanibondi, J. Phys. D: Appl. Phys. 43, 105202 (2010).

    Article  ADS  Google Scholar 

  23. M. E. Morsli, P. Proulx and D. Gravelle, Plasma Sources Sci. Technol. 20, 015016 (2011).

    Article  ADS  Google Scholar 

  24. S. B. Punjabi et al., Phys. Plasmas 19, 012108 (2012).

    Article  ADS  Google Scholar 

  25. M. Yu, K. Liu, T. Zhao and Y. Zhang, J. Korean Phys. Soc. 69, 1537 (2016).

    Article  ADS  Google Scholar 

  26. M. Yu et al., Plasma Sci. Technol. 16, 930 (2014).

    Article  ADS  Google Scholar 

  27. Y. Takama and K. Suzuki, J. Thermophys. Heat Tr. 21, 630 (2007).

    Article  Google Scholar 

  28. D. P. Lymberopoulos and D. J. Economou, J. Appl. Phys. 73, 3668 (1993).

    Article  ADS  Google Scholar 

  29. A. O. Brezmes and C. Breitkopf, Vacuum 116, 65 (2015).

    Article  ADS  Google Scholar 

  30. S. Miyatani, K. Yamada and T. Abe, in Proceedings of the 46th Fluid Dynamics Conference (Hirosaki, Japan, Japan Aerospace Exploration Agency, 2014).

    Google Scholar 

  31. M. Yu et al., Plasma Sci. Technol. 17, 749 (2015).

    Article  ADS  Google Scholar 

  32. M. Tanaka et al., J. Japan Soc. Aeronaut. Space Sci. 67, 42 (2019).

    Google Scholar 

  33. F. Lei et al., AIP Adv. 8, 015003 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 11705143), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018JQ1016), and the China Postdoctoral Science Foundation (2018M643814XB). We appreciate Dr. Kazuhiko Yamada from the Japan Aerospace Exploration Agency for his helpful discussion on this study. Computations were carried out by using the Tianhe-2 Supercomputer at the National Supercomputer Center in Guangzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Ma, L. & Liu, K. Effects of the Nonequilibrium Model and the Discharge Frequency on an Argon Inductively Coupled Plasma Simulation. J. Korean Phys. Soc. 75, 131–137 (2019). https://doi.org/10.3938/jkps.75.131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.131

Keywords

Navigation