Log in

Effects of the nozzle throat diameter on the flow properties of an inductively coupled plasma heater

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, the non-equilibrium subsonic and supersonic inductively coupled plasmas (ICPs) in an ICP heater were numerically simulated and reproduced from the torch to the conical nozzle to the vacuum chamber. The flow field characteristics and the thermal non-equilibrium characteristics are obtained. Through an analysis and discussion of the plasma parameters with different nozzle throat diameters, the effects of the nozzle throat diameter on plasma properties such as the pressure, plasma velocity and temperature are obtained from the simulated results. The maximum velocity is found to appear at the exit of the nozzle, and the velocity of flow generated by a nozzle with a smaller throat diameter is found to be bigger. The pressure, velocity and temperature in the vacuum chamber fluctuate twice due to the shock wave at the nozzle’s exit. The position of the maximum temperature appears to be located in the center of the coil heating while the position of the high temperature core produced by a small diameter nozzle is closer to the inlet than that of the large diameter nozzle is. Due to the interaction between the shock wave produced by the nozzle and the plasma flow, the thermal plasma forms several independent hot heating cores in the vacuum chamber. The maximum values of the electron number density and the electric field intensity are bigger when the throat diameter of the nozzle is smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Fu**o, M. Yamauchi, J. Appl. Phys. 128, 173302 (2020)

    Article  ADS  Google Scholar 

  2. T. Suzuki, K. Fujita, K. Ando et al., J. Thermophys. Heat Transf. 22, 382 (2008)

    Article  Google Scholar 

  3. H.J. Ma, G.L. Wang, J. Luo et al., Acta Phys. Sin. 67, 025201 (2018)

    Google Scholar 

  4. L. Wang, Y. Zhao, Z. Yang et al., Ceram. Int. 47, 6397 (2020)

    Article  Google Scholar 

  5. C. Zhao, C. Ma, Z. Wen et al., Rare Met. Mater. Eng. 48, 0446 (2019)

    Google Scholar 

  6. J. He, L. Bai, H. ** et al., Powder Technol. 302, 288 (2016)

    Article  Google Scholar 

  7. E. Gomez, D.A. Rani, C.R. Cheeseman et al., J. Hazard. Mater. 161, 614 (2009)

    Article  Google Scholar 

  8. B. Jim, L. Carl, P. Don et al., IEEE Trans. Plasma Sci. 39, 3187 (2011)

    Article  Google Scholar 

  9. E. Turkoz, M. Celik, IEEE T. Plasma Sci. 42, 235 (2014)

    Article  ADS  Google Scholar 

  10. S.B. Punjabi, N.K. Joshi, H.A. Mangalvedekar et al., Phys. Plasmas 19, 821 (2012)

    Article  Google Scholar 

  11. D.V. Ivanov, S.G. Zverev, IEEE Trans. Plasma Sci. 45, 3125 (2017)

    Article  ADS  Google Scholar 

  12. V. Frolov, D. Ivanov, V. Sosnin, I.O.P. Conf, IOP Ser. Mater. Sci. Eng. 643, 012071 (2019)

    Article  Google Scholar 

  13. M. Shafaee, A. Elkaie, H. Fallah et al., Int. J. Robot. Res. 5, 133 (2016)

    Google Scholar 

  14. M. Yu, K. Yamada, K. Liu et al., AIP Adv. 9, 015120 (2019)

    Article  ADS  Google Scholar 

  15. M. Yu, H. Kihara, K.I. Abe et al., J. Korean Phys. Soc. 66, 1833 (2015)

    Article  ADS  Google Scholar 

  16. R.N. Gupta, J.M. Yos, R.A. Thompson et al., NASA reference publication 1232 (1990)

  17. J.M. Yos, NASA technique memorandum RAD-TM-63-7 (1963)

  18. C.F. Curtiss, J.O. Hirschfelder, J. Chem. Phys. 17, 550 (1949)

    Article  ADS  Google Scholar 

  19. M. Yu, Y. Takahashi, H. Kihara et al., Plasma Sci. Technol. 17, 749 (2015)

    Article  ADS  Google Scholar 

  20. P.Z. Chen, S.R. Sun, H.X. Wang, J. Eng. Thermophys. 36, 1067 (2015). ((in Chinese))

    Google Scholar 

  21. M. Yu, K. Yamada, Y. Takahashi et al., Phys. Plasmas. 23, 123523 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 12175177), the China Postdoctoral Science Foundation (Grant no. 2021M693889), and the Foundation for Research and Development of Applied Technology in Beilin District of **’an (Grant no. GX2047). Computation was carried out by using the Tianhe-2 Supercomputer at the National Supercomputer Center in Guangzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Wang, Z. Effects of the nozzle throat diameter on the flow properties of an inductively coupled plasma heater. J. Korean Phys. Soc. 79, 1019–1026 (2021). https://doi.org/10.1007/s40042-021-00295-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00295-9

Keywords

Navigation