Log in

The Gamma-Ray Background Model for Detectors Onboard Low-Altitude and High-Inclination Satellites in the Energy Band up to Several MeV

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Results are presented from an analysis of the temporal behavior of the background count rate in an energy band of up to several MeV for the γ-ray detectors onboard low-altitude satellites, using data of the AVS-F instrument as an example. The instrument was installed onboard the CORONAS-F satellite with orbital parameters of an altitude of ~500 km and an inclination of 82.5°. The temporal profiles of the background count rate in the equatorial orbit regions are approximated by fourth- or fifth-degree polynomials. The applicability of the approximating polynomials is shown for the instruments installed onboard satellites with orbital inclinations of up to 38°, allowing for the evolution of the Kp index in the preceding time interval of 12–24 h before passing the geomagnetic equator. In modeling the RHESSI data of October 27, 2003, at an initial orbital altitude of ~600 km and an inclination of 38°, a mean count rate value of 1017 ± 8 s−1 is obtained in the geomagnetic latitude interval ±5° in the energy range Е > 0.1 MeV (analysis of the data yields a value of 1094 ± 153 s−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Charalambous, P.M., Dean, A.J., Lewis, R.A., and Dipper, N.A., Nucl. Instrum. Methods Phys. Res., Sect. A, 1985, vol. 283, p. 533.

    Google Scholar 

  2. Dean, A.J., Lei, F., and Knight, P.J., Space Sci. Rev., 1991, vol. 57, p. 109.

    Article  ADS  Google Scholar 

  3. Gehrels, P.M., Nucl. Instrum. Methods Phys. Res., Sect. A, 1992, vol. 313, p. 513.

    Google Scholar 

  4. Glyanenko, A.S., Kotov, Yu.D., Pavlov, A.V., Arkhangelsky, A.I., Samoilenko, V.T., Yurov, V.N., Pankov, V.M., and Ryumin, S.P., Instrum. Exp. Tech., 1999, vol. 42, no. 5, p. 596.

    Google Scholar 

  5. Kotov, Yu.D., Arkhangel’skaya, I.V., Arkhangel’skii, A.I., et al., Izv. Ross. Akad. Nauk, Ser. Fiz., 2002, vol. 66, no. 11, p. 1666.

    Google Scholar 

  6. Kuznetsov, S.N., Bogomolov, A.V, Gordeev, Yu.P., et al., Izv. Ross. Akad. Nauk, Ser. Fiz., 1995, vol. 59, no. 4, p. 2.

    Google Scholar 

  7. Pankov, V.M., Prokhin, V.L., and Khavenson, N.G., Sol. Syst. Res., 2006, vol. 40, no. 4, p. 314.

    Article  ADS  Google Scholar 

  8. Kuznetsov, V.D., Sol. Syst. Res., 2005, vol. 39, no. 6, p. 463.

    ADS  Google Scholar 

  9. Lin, R.P., Dennis, B.R., Hurford, G.J., et al., Sol. Phys., 2002, vol. 210, nos. 1–2, p. 3.

    Article  ADS  Google Scholar 

  10. Smith, D.M., Lin, R.P., Turin, P., et al., Sol. Phys., 2002, vol. 210, nos. 1–2, p. 33.

    Article  ADS  Google Scholar 

  11. Rubin, B.C., Lei, F., Fishman, G.J., et al., Astron. Astrophys. Suppl. Ser., 1996, vol. 120, p. 687.

    ADS  Google Scholar 

  12. Sanchez, F. and Ballesteros, F., Robert. et al, Nucl. Instrum. Methods Phys. Res., Sect. B, 1999, vol. 155, p. 160.

    Google Scholar 

  13. Arkhangelskaja, I.V., Arkhangelskiy, A.I., Lyapin, A.R., et al., Phys. Proc., 2015, vol. 74, p. 281.

    Article  ADS  Google Scholar 

  14. Arkhangelskaja, I.V., Arkhangelskiy, A.I., Kotov, Yu.D., Kuznetsov, S.N., and Glyanenko, A.S., Sol. Syst. Res., 2008, vol. 42, no. 4, p. 351.

    Article  ADS  Google Scholar 

  15. https://hesperia.gsfc.nasa.gov/hessidata/metadata/catalog/.

  16. Arkhangelskaya, I.V., Arkhangelskii, A.I., Kotov, Yu.D., Kuznetsov, S.I., and Glyanenko, A.S., Cosmic Res., 2007, vol. 45, no. 3, p. 261.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Arkhangelskaja.

Additional information

Translated by O. Lotova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhangelskaja, I.V., Arkhangelskiy, A.I. & Mikhailova, A.V. The Gamma-Ray Background Model for Detectors Onboard Low-Altitude and High-Inclination Satellites in the Energy Band up to Several MeV. Bull. Russ. Acad. Sci. Phys. 83, 620–624 (2019). https://doi.org/10.3103/S106287381905006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287381905006X

Navigation