Log in

Background for a gamma-ray satellite on a low-Earth orbit

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The different background components in a low-Earth orbit have been modeled in the 10 keV to 100 GeV energy range. The model is based on data from previous instruments and it considers both primary and secondary particles, charged particles, neutrons and photons. The necessary corrections to consider the geomagnetic cutoff are applied to calculate the flux at different inclinations and altitudes for a mean solar activity. Activation simulations from such a background have been carried out using the model of a possible future gamma-ray mission (e-ASTROGAM). The event rates and spectra from these simulations were then compared to those from the isotopes created by the particles present in the South Atlantic Anomaly (SAA). The primary protons are found to be the main contributor of the activation, while the contributions of the neutrons, and that of the secondary protons can be considered negligible. The long-term activation from the passage through the SAA becomes the main source of background at high inclination (i\(\gtrsim 10^{\circ }\)). The used models have been collected in a Python class openly available on github.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

  2. It must be noted that this value changes slowly, 0.5% in the last 10 years, but constantly due to the evolution of Earth’s magnetic field

  3. https://github.com/pcumani/LEOBackground

  4. https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

  5. https://www.spenvis.oma.be/

  6. https://www.spenvis.oma.be/help/models/magshielding.html

References

  1. Abdo, A.A., Ackermann, M., Ajello, M., Ampe, J., Anderson, B., Atwood, W.B., Axelsson, M., Bagagli, R., Baldini, L., Ballet, J., et al.: The on-orbit calibration of the fermi large area telescope. Astroparticle. Phys.. 32, 193–219 (2009). https://doi.org/10.1016/j.astropartphys.2009.08.002. ar**v:0904.2226

    Article  ADS  Google Scholar 

  2. Abdo, A.A., Ackermann, M., Ajello, M., Atwood, W.B., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Baughman, B.M., Bechtol, K, et al.: Fermi large area telescope observations of the cosmic-ray induced γ-ray emission of the Earth’s atmosphere. Phys.. Rev.. D 80(12), 122004 (2009). https://doi.org/10.1103/PhysRevD.80.122004. ar**v:0912.1868

    Article  ADS  Google Scholar 

  3. Ackermann, M., Ajello, M., Albert, A., Allafort, A., Baldini, L., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., Blandford, R.D., Fermi LAT Collaboration: Inferred cosmic-ray spectrum from fermi large area telescope γ-ray observations of Earth’s limb. Phys.. Rev.. Lett.. 112(15), 151103 (2014). https://doi.org/10.1103/PhysRevLett.112.151103. ar**v:1403.5372

    Article  ADS  Google Scholar 

  4. Ackermann, M., Ajello, M., Albert, A., Atwood, W.B., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., Bissaldi, E., et al.: The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. ApJ 799, 86 (2015). https://doi.org/10.1088/0004-637X/799/1/86. ar**v:1410.3696

    Article  ADS  Google Scholar 

  5. Aguilar, M., Aisa, D., Alvino, A., Ambrosi, G., Andeen, K., Arruda, L., Attig, N., Azzarello, P., Bachlechner, A., Barao, F., et al.: Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett. 113, 121102 (2014). https://doi.org/10.1103/PhysRevLett.113.121102

    Article  ADS  Google Scholar 

  6. Aguilar, M., Aisa, D., Alpat, B., Alvino, A., Ambrosi, G., Andeen, K., Arruda, L., Attig, N., Azzarello, P., Bachlechner, A., et al.: Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 gv to 3 tv with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett. 115, 211101 (2015). https://doi.org/10.1103/PhysRevLett.115.211101

    Article  ADS  Google Scholar 

  7. Aguilar, M., Aisa, D., Alpat, B., Alvino, A., Ambrosi, G., Andeen, K., Arruda, L., Attig, N., Azzarello, P., Bachlechner, A., et al.: Precision measurement of the proton flux in primary cosmic rays from rigidity 1 gv to 1.8 tv with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett. 114, 171103 (2015). https://doi.org/10.1103/PhysRevLett.114.171103

    Article  ADS  Google Scholar 

  8. Alcaraz, J., Alpat, B., Ambrosi, G., Anderhub, H., Ao, L., Arefiev, A., Azzarello, P., Babucci, E., Baldini, L., Basile, M., et al.: Leptons in near earth orbit. Phys. Lett. B 484(1), 10–22 (2000). https://doi.org/10.1016/S0370-2693(00)00588-8. http://www.sciencedirect.com/science/article/pii/S0370269300005888

    Article  ADS  Google Scholar 

  9. Alcaraz, J., Alvisi, D., Alpat, B., Ambrosi, G., Anderhub, H., Ao, L., Arefiev, A., Azzarello, P., Babucci, E., Baldini, L., et al.: Protons in near earth orbit. Phys. Lett. B 472(1), 215–226 (2000). https://doi.org/10.1016/S0370-2693(99)01427-6. http://www.sciencedirect.com/science/article/pii/S0370269399014276

    Article  ADS  Google Scholar 

  10. Armstrong, T.W., Chandler, K.C., Barish, J.: Calculations of neutron flux spectra induced in the earth’s atmosphere by galactic cosmic rays. J. Geophys. Res. 78(16), 2715–2726 (1973). https://doi.org/10.1029/JA078i016p02715. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA078i016p02715

    Article  ADS  Google Scholar 

  11. Atwood, W.B., Abdo, A.A., Ackermann, M., Althouse, W., Anderson, B., Axelsson, M., Baldini, L., Ballet, J., Band, D.L., Barbiellini, G., et al.: The large area telescope on the fermi gamma-ray space telescope mission. ApJ 697, 1071–1102 (2009). https://doi.org/10.1088/0004-637X/697/2/1071. ar**v:0902.1089

    Article  ADS  Google Scholar 

  12. Battersby, S.J.R., Quenby, J.J., Dyer, C.S., Truscott, P.R., Hammond, N.D.A., Comber, C., Kurfess, J.D., Johnson, W.N., Kinzer, R.L., Strickman, M.S., Jung, G.V., Purcell, W.R., Grabelsky, D.A., Ulmer, M.P.: Calculation of the induced radioactivity background in OSSE. In: Friedlander, M, Gehrels, N, Macomb, D J (eds.) American Institute of Physics Conference Series, vol. 280, pp 1107–1111 (1993), https://doi.org/10.1063/1.44183

  13. Churazov, E., Sazonov, S., Sunyaev, R., Revnivtsev, M.: Earth X-ray albedo for cosmic X-ray background radiation in the 1–1000 keV band. ar**v:astro-ph/0608252 (2006)

  14. De Angelis, A., Tatischeff, V., Tavani, M., Oberlack, U., Grenier, I., Hanlon, L., Walter, R., Argan, A., von Ballmoos, P., Bulgarelli, A., et al.: The e-ASTROGAM mission. Exploring the extreme Universe with gamma rays in the MeV - GeV range, vol. 44. ar**v:1611.02232 (2017)

  15. De Angelis, A., Tatischeff, V., Grenier, I.A., McEnery, J., Mallamaci, M., Tavani, M., Oberlack, U., Hanlon, L., Walter, R., Argan, A., et al.: Science with e-ASTROGAM (A space mission for MeV-GeV gamma-ray astrophysics). To be published in Journal of High Energy Astrophysics. ar**v:1711.01265 (2018)

  16. Dyer, C.S., Truscott, P.R., Hammond, N.D.A., Comber, C.: Radioactivity induced in gamma-ray spectrometers. In: Rester, A.C. Jr, Trombka, J.I. (eds.) High-Energy Radiation Background in Space, vol. 186, pp 278–288. American Institute of Physics Conference Series (1989), https://doi.org/10.1063/1.38187

  17. Ginet, G.P., O’Brien, T.P., Huston, S.L., Johnston, W.R., Guild, T.B., Friedel, R., Lindstrom, C.D., Roth, C.J., Whelan, P., Quinn, R.A., et al.: Ae9, ap9 and spm: New models for specifying the trapped energetic particle and space plasma environment. Space. Sci. Rev. 179(1), 579–615 (2013). https://doi.org/10.1007/s11214-013-9964-y

    Article  ADS  Google Scholar 

  18. Kole, M., Pearce, M., Muñoz Salinas, M: A model of the cosmic ray induced atmospheric neutron environment. Astroparticle Phys. 62, 230–240 (2015). https://doi.org/10.1016/j.astropartphys.2014.10.002. ar**v:1410.1364

    Article  ADS  Google Scholar 

  19. Lingenfelter, R.E.: The cosmic-ray neutron leakage flux. J. Geophys. Res. 68(20), 5633–5639 (1963). https://doi.org/10.1029/JZ068i020p05633. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JZ068i020p05633

    Article  ADS  Google Scholar 

  20. Mizuno, T., Kamae, T., Godfrey, G., Handa, T., Thompson, D.J., Lauben, D., Fukazawa, Y., Ozaki, M.: Cosmic-ray background flux model based on a gamma-ray large area space telescope balloon flight engineering model. Astrophys. J. 614(2), 1113 (2004). http://stacks.iop.org/0004-637X/614/i=2/a=1113

    Article  ADS  Google Scholar 

  21. O’Brien, T.P., Johnston, W.R., Huston, S.L., Roth, C.J., Guild, T.B., Su, Y.J., Quinn, R.A.: Changes in ae9/ap9-irene version 1.5. IEEE Trans. Nucl. Sci. 65(1), 462–466 (2018). https://doi.org/10.1109/TNS.2017.2771324

    Article  ADS  Google Scholar 

  22. Sazonov, S., Churazov, E., Sunyaev, R., Revnivtsev, M.: Hard X-ray emission of the Earth’s atmosphere: Monte Carlo simulations. MNRAS 377, 1726–1736 (2007). https://doi.org/10.1111/j.1365-2966.2007.11746.xastro-ph/0608253., ar**v:xastro-ph/0608253

    Article  ADS  Google Scholar 

  23. Smart, D., Shea, M.: A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft. Adv. Space Res. 36(10), 2012–2020 (2005). https://doi.org/10.1016/j.asr.2004.09.015. http://www.sciencedirect.com/science/article/pii/S0273117705001997, solar Wind-Magnetosphere-Ionosphere Dynamics and Radiation Models

    Article  ADS  Google Scholar 

  24. Sreekumar, P., Bertsch, D.L., Dingus, B.L., Esposito, J.A., Fichtel, C.E., Hartman, R.C., Hunter, S.D., Kanbach, G., Kniffen, D.A., Lin, Y.C., Mayer-Hasselwander, H.A., Michelson, P.F., von Montigny, C., Mücke, A, Mukherjee, R., Nolan, P.L., Pohl, M., Reimer, O., Schneid, E., Stacy, J.G., Stecker, F.W., Thompson, D.J., Willis, T.D.: Egret observations of the extragalactic gamma-ray emission. Astrophys. J. 494(2), 523 (1998). http://stacks.iop.org/0004-637X/494/i=2/a=523

  25. Thompson, D.J., Simpson, G.A., Ozel, M.E.: SAS 2 observations of the earth albedo gamma radiation above 35 MeV. J. Geophys. Res. 86, 1265–1270 (1981). https://doi.org/10.1029/JA086iA03p01265

    Article  ADS  Google Scholar 

  26. Türler, M, Chernyakova, M., Courvoisier, T.J.L., Lubiński, P, Neronov, A., Produit, N., Walter, R.: INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission. A&A 512, A49 (2010). https://doi.org/10.1051/0004-6361/200913072. ar**v:1001.2110

    Article  ADS  Google Scholar 

  27. van Allen, J.A.: Observation of high intensity radiation by satellites 1958 alpha and gamma. J. Jet. Propul. 28(9), 588–592 (1958)

    Article  Google Scholar 

  28. Winkler, C., Courvoisier, T.J.L., Di Cocco, G., Gehrels, N., Giménez, A, Grebenev, S., Hermsen, W., Mas-Hesse, J.M., Lebrun, F., Lund, N., et al.: The INTEGRAL mission. A&A 411, L1–L6 (2003). https://doi.org/10.1051/0004-6361:20031288

    Article  ADS  Google Scholar 

  29. Zoglauer, A., Andritschke, R., Schopper, F.: MEGAlib the medium energy gamma-ray astronomy library. New. A. Rev. 50, 629–632 (2006). https://doi.org/10.1016/j.newar.2006.06.049

    Article  ADS  Google Scholar 

  30. Zoglauer, A., Weidenspointner, G., Wunderer, C.B., Boggs, S.E.: Status of instrumental background simulations for gamma-ray telescopes with geant4. In: 2008 IEEE Nuclear Science Symposium Conference Record, pp. 2859–2864. https://doi.org/10.1109/NSSMIC.2008.4774966 (2008)

Download references

Acknowledgements

This work has been carried out in the framework of the H2020 project AHEAD, funded by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cumani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cumani, P., Hernanz, M., Kiener, J. et al. Background for a gamma-ray satellite on a low-Earth orbit. Exp Astron 47, 273–302 (2019). https://doi.org/10.1007/s10686-019-09624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-019-09624-0

Keywords

Navigation