Log in

The isothermal degradation of wood

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The results of a study of spruce (whitewood) and its organic components (cellulose, hemicellulose, and lignin) by isothermal thermogravimetric analysis in air and inert atmospheres are presented. Data on the thermal decomposition of fuel wood in a temperature range from 200 to 450°C were acquired. The porous structure of biocoal and the process of its evolution were examined by scanning electron microscopy. The porous structure of the whitewood thermally treated at 200 and 300°C had pore sizes from 4 to 15 μm. The stratification of tracheids occurred in the above temperature range. At higher temperatures of 350°C or above, thermal pores with sizes of about 100 nm appeared. As the temperature was increased to 400°C, the pore size increased to 200–300 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mar’yandyshev, P.A., Chernov, A.A., and Lyubov, V.K., Khim. Tverd. Topl. (Moscow), 2015, no. 2, p. 59.

    Google Scholar 

  2. Mar’yandyshev, P.A., Chernov, A.A., Popova, E.I., and Lyubov, V.K., Sovr. Naukoemk. Tekhn., 2015, no. 12, p. 249.

    Google Scholar 

  3. Mar’yandyshev, P.A., Chernov, A.A., and Lyubov, V.K., Izv. Vyssh. Ucheb. Zaved., Lesnoi Zh., 2016, no. 1, p. 167.

    Google Scholar 

  4. Jankovich, Z.B. and Jankovich, M.M., Cellul. Chem. Technol., 2013, vol. 47, p. 681.

    Google Scholar 

  5. Jankovich, Z.B., Cellul., 2014, vol. 21, p. 2285.

    Article  Google Scholar 

  6. Trubetskaya, A., Jensen, P.A., Jensen, A.D., et al., Fuel Proc. Tech., 2015, vol. 140, p. 205.

    Article  CAS  Google Scholar 

  7. Ra, H.W., Seo, M.W., Yoon, S.J., Yoon, S.M., et al., J. Chem. Eng., 2014, vol. 31, p. 1570.

    CAS  Google Scholar 

  8. Cetin, E., Moghtaderi, B., Gupta, R., and Wall, T.F., Fuel, 2004, vol. 83, p. 2139.

    Article  CAS  Google Scholar 

  9. Avila, C., Pang, C.H., Wu, T., and Lester, E., Biores. Technol., 2011, vol. 102, p. 5237.

    Article  CAS  Google Scholar 

  10. www.tainstruments.com/product.aspx?siteid=11&id=20&n=1.

  11. http://tescan.ru/products/vega-sem/vega-xm/.

  12. Novozhilov, E.V., Primenenie fermentnykh tekhnologii v tsellyulozno-bumazhnoi promyshlennosti (Application of Enzyme Technologies to the Pulp and Paper Industry), Arkhangel’sk: IPTs SAFU. 2013, p. 364.

    Google Scholar 

  13. Perevolotskaya, V.K., Ros. Khim. Zh., 2002, no. 2, p. 52.

    Google Scholar 

  14. Orfao, J.J.M., Antunes, F.J.A., and Figueiredo, J.L., Fuel, 1999, vol. 78, p. 349.

    Article  CAS  Google Scholar 

  15. Maryandyshev, P.A., Chernov, A.A., Lyubov, V.K., et al., J. Therm. Anal. Calorim., 2015, vol. 121, p. 963.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Maryandyshev.

Additional information

Original Russian Text © P.A. Maryandyshev, A.A. Chernov, E.I. Popova, M.K. Eseev, V.K. Lyubov, 2016, published in Khimiya Tverdogo Topliva, 2016, No. 6, pp. 51–59.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maryandyshev, P.A., Chernov, A.A., Popova, E.I. et al. The isothermal degradation of wood. Solid Fuel Chem. 50, 381–389 (2016). https://doi.org/10.3103/S0361521916060069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521916060069

Navigation