Log in

The pyrolysis process of wood biomass samples under isothermal experimental conditions—energy density considerations: application of the distributed apparent activation energy model with a mixture of distribution functions

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This work deals with the isothermal pyrolysis of Pine and Beech wood samples and kinetic studies, using the thermo-analytical technique, at five different operating temperatures. Pyrolysis processes were investigated by using the distributed apparent activation energy model, which involves the complex mixture of different continuous distribution functions. It was found that decomposition processes of wood pseudo-components take place in different conversion areas during entire pyrolyses, whereby these areas, as well as the changes in apparent activation energy (E a) values, are not the same for softwood and hardwood samples. Bulk density (Bden) and energy density (ED) considerations have shown that both biomass samples suffer from low Bden and ED values. It was concluded that pyrolysis can be used as a means of decreasing transportation costs of wood biomass materials, thus increasing energy density. The “pseudo” kinetic compensation effect was identified, which arises from kinetic model variation and wood species variation. In the current extensive study, it was concluded that primary pyrolysis refers to decomposition reactions of any of three major constituents of the considered wood samples. Also, it was established that primary reactions may proceed in parallel with simultaneous decomposition of lignin, hemicelluloses and cellulose in the different regions of wood samples, depending on the operating temperature. It was established that endothermic effects dominate, which are characterized with devolatilization and formation of volatile products. It has been suggested that the endothermic behavior that arises from pyrolyses of considered samples may indicate the endothermic depolymerization sequence of cellulose structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Figs. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agrawal RK (1986) On the compensation effect. J Therm Anal Calorim 31:73–86

    Article  CAS  Google Scholar 

  • Agrawal RK (1988) Kinetics of reactions involved in pyrolysis of cellulose I. The three reaction model. Can J Chem Eng 66:403–417

    Article  CAS  Google Scholar 

  • Agrawal RK (1989) The compensation effect: a fact or a fiction. J Therm Anal Calorim 35:909–917

    Article  CAS  Google Scholar 

  • Aho A, Kumar N, Eränen K, Holmbom B, Hupa M, Salmi T, Murzin DY (2008) Pyrolysis of softwood carbohydrates in a fluidized bed reactor. Int J Mol Sci 9:1665–1675

    Article  CAS  Google Scholar 

  • Antal MJ, Várhegyi G (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 34:703–717

    Article  CAS  Google Scholar 

  • Antal MJ, Várhegyi G (1997) Impact of systematic errors on the determination of cellulose pyrolysis kinetic. Energy Fuels 11:1309–1310

    Article  CAS  Google Scholar 

  • Baitalow F, Schmidt H-G, Wolf G (1999) Formal kinetic analysis of processes in the solid state. Thermochim Acta 337:111–120

    Article  CAS  Google Scholar 

  • Barneto AG, Carmona JA, Alfonso JEM, Blanco JD (2009) Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. J Anal Appl Pyrolysis 86:108–114

    Article  CAS  Google Scholar 

  • Beall FC (1969) Thermogravimetric analysis of wood lignin and hemicelluloses. Wood Fiber Sci 1(3):215–226

    Google Scholar 

  • Belderok HJM (2007) Experimental investigation and modeling of the pyrolysis of biomass. PhD thesis, lecture no. WVT 2007.33, Eindhoven University of Technology, Dec 2007, Eindhoven, The Netherlands, pp 1–125

  • Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23(11):3271–3280

    Article  CAS  Google Scholar 

  • Branca C, Albano A, Di Blasi C (2005) Critical evaluation of global mechanisms of wood devolatilization. Thermochim Acta 429:133–141

    Article  CAS  Google Scholar 

  • Braun RL, Burnham AK (1987) Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels 1:153–161

    Article  CAS  Google Scholar 

  • Broido A, Weinstein M (1970) Thermogravimetric analysis of ammonia-swelled cellulose. Combust Sci Technol 1(4):279–285

    Article  Google Scholar 

  • Brown ME, Galwey AK (1989) Arrhenius parameters for solid-state reactions from isothermal rate–time curves. Anal Chem 61:1136–1139

    Article  CAS  Google Scholar 

  • Bryden KM, Ragland KW, Rutland CJ (2002) Modeling thermally thick pyrolysis of wood. Biomass Bioenergy 22:41–53

    Article  CAS  Google Scholar 

  • Burnham AK, Braun RL (1999) Global kinetic analysis of complex materials. Energy Fuels 13:1–22

    Article  CAS  Google Scholar 

  • Cai J, Liu R (2008) New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresour Technol 99(8):2795–2799

    Article  CAS  Google Scholar 

  • Cai J, Wu W, Liu R, Huber GW (2013) A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chem 15:1331–1340

    Article  CAS  Google Scholar 

  • Chew MYL, An Hoang NQ, Shi L (2011) Pyrolysis of tropical hardwood under long-term and low-temperature conditions. Int J Archit Sci 8(1):17–27

    Google Scholar 

  • Chinnappan B, Shikha B, Ranjit SD (eds) (2012) Biomass conversion: the interface of biotechnology, chemistry and materials science, chap 11. Springer, Berlin, pp 342–350

    Google Scholar 

  • Cho J, Davis JM, Huber GW (2010) The intrinsic kinetics and heats of reactions for cellulose pyrolysis and char formation. ChemSusChem 3:1162–1165

    Article  CAS  Google Scholar 

  • Dahiya JB, Kumar K, Muller-Hagedorn M, Bockhorn H (2008) Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym Int 57(5):722–729

    Article  CAS  Google Scholar 

  • de Wild PJ, Reith H, Heeres HJ (2011) Biomass pyrolysis for chemicals. Biofuels 2:185–208

    Article  Google Scholar 

  • Dee S, Bell AT (2011) Effects of reaction conditions on the acid-catalyzed hydrolysis of miscanthus dissolved in an ionic liquid. Green Chem 13:1467–1475

    Article  CAS  Google Scholar 

  • Demirbas A (2005) Pyrolysis of ground beech wood in irregular heating rate conditions. J Anal Appl Pyrol 73:39–43

    Article  CAS  Google Scholar 

  • Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34(1):47–90

    Article  Google Scholar 

  • Di Blasi C, Branca C (2001) Kinetics of primary product formation from wood pyrolysis. Ind Eng Chem Res 40:5547–5556

    Article  Google Scholar 

  • Dong C-Q, Zhang Z-F, Lu Q, Yang Y-P (2012) Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Conv Manag 57:49–59

    Article  CAS  Google Scholar 

  • EasyFit Software (2014) Handbook of tools and fitting options, mathwave—data analysis & simulation. http://www.mathwave.com

  • Emsley AM, Stevens GC (1994) Kinetics and mechanisms of the low-temperature degradation of cellulose. Cellulose 1(1):26–56

    Article  CAS  Google Scholar 

  • Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. Energy Fuels 1:123–137

    Article  CAS  Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3(2):107–115

    Article  CAS  Google Scholar 

  • Galwey AK (1977) Compensation effect in heterogenous catalysis. Adv Catal 26:247–322

    Article  CAS  Google Scholar 

  • Gašparovič L, Koreňová Z, Jelemenský Ľ (2010) Kinetic study of wood chips decomposition by TGA. Chem Pap 64(2):174–181

    Article  Google Scholar 

  • Gašparovič L, Labovský J, Markoš J, Jelemenský Ľ (2012) Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chem Biochem Eng Q 26(1):45–53

    Google Scholar 

  • Giuntoli J, de Jong W, Arvelakis S, Spliethoff H, Verkooijen AHM (2007) Proceedings of 16th European biomass conference and exposition, May 7–11, Berlin, Germany, pp 1–6

  • Glasser WG (1985) Lignin. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemical biomass conversion. Elsevier, Amsterdam, pp 61–76

    Chapter  Google Scholar 

  • Gopalakrishnan S, Sujatha R (2011) Comparative thermoanalytical studies of polyurethanes using Coats-Redfern, Broido and Horowitz-Metzger methods. Der Chem Sin 2(5):103–117

    Google Scholar 

  • Güneş M, Güneş S (2002) A direct search method for determination of DAEM kinetic parameters from non-isothermal TGA data. Appl Math Comput 130:619–628

    Article  Google Scholar 

  • Gupta R, Mittal ND (2010) Pyrolysis modelling in a wood stove. Int J Eng Sci Technol 2(10):5088–5098

    Google Scholar 

  • Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5:4952–5001

    Article  CAS  Google Scholar 

  • Janković B (2011) The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models. Bioresour Technol 102:9763–9771

    Article  Google Scholar 

  • Janković B (2013) Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydr Polym 95(2):621–629

    Article  Google Scholar 

  • Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498:61–66

    Article  CAS  Google Scholar 

  • ** W, Singh K, Zondlo J (2013) Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture 3:12–32

    Article  CAS  Google Scholar 

  • Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328

    Article  CAS  Google Scholar 

  • Koufopanos CA, Lucchesi A, Maschio G (1989) Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng 67:75–84

    Article  CAS  Google Scholar 

  • Ledakowicz S, Stolarek P (2002) Kinetics of biomass thermal decomposition. Chem Pap 56(6):378–381

    CAS  Google Scholar 

  • Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrol 94:17–32

    Article  Google Scholar 

  • Lee SS, Yu S, Withers SG (2003) Detailed dissection of a new mechanism for glycoside cleavage: alpha-1,4-glucanlyase. Biochemistry 42:13081–13090

    Article  CAS  Google Scholar 

  • Lewin M (2007) Handbook of fiber chemistry, 3rd edn. CRC Press, Taylor and Francis, Boca Raton, pp 611–619

    Google Scholar 

  • Lin T, Goos E, Riedel U (2013) A sectional approach for biomass: modelling the pyrolysis of cellulose. Fuel Process Technol 115:246–253

    Article  CAS  Google Scholar 

  • Lipska AE, Parker WJ (1966) Kinetics of the pyrolysis of cellulose in the temperature range 250–300°C. J Appl Polym Sci 10(10):1439–1453

    Article  CAS  Google Scholar 

  • Lipska AE, Wodley FA (1969) Isothermal pyrolysis of cellulose: kinetics and gas chromatographic mass spectrometric analysis of the degradation products. J Appl Polym Sci 13(5):851–865

    Article  CAS  Google Scholar 

  • Luo Z, Wang S, Cen K (2005) A model of wood flash pyrolysis in fluidized bed reactor. Renew Energy 30:377–392

    Article  CAS  Google Scholar 

  • Manya JJ, Velo E, Puigjaner L (2003) Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res 42:434–441

    Article  CAS  Google Scholar 

  • Miller RS, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust Sci Technol 126(1–6):97–137

    CAS  Google Scholar 

  • Milosavljevic I, Suuberg EM (1995) Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind Eng Chem Res 34:1081–1091

    Article  CAS  Google Scholar 

  • Miura K (1995) A new and simple method to estimate f(E) and k 0(E) in the distributed activation energy model from three sets of experimental data. Energy Fuels 9:302–307

    Article  CAS  Google Scholar 

  • Müller-Hagedorn M, Bockhorn H, Krebs L, Müller U (2003) A comparative kinetic study on the pyrolysis of three different wood species. J Anal Appl Pyrol 68–69:231–249

    Article  Google Scholar 

  • Nakano J, Higuchi T, Sumimoto T, Ishizu A (1983) Mokuzai kagakuk. Uni Publishing, Tokyo, pp 145–227 (in Japanese)

    Google Scholar 

  • Novak JM, Cantrell KB, Watts DW (2013) Compositional and thermal evaluation of lignocellulosic and poultry litter chars via high and low temperature pyrolysis—high and low temperature pyrolyzed biochars. Bioenerg Res 6:114–130

    Article  CAS  Google Scholar 

  • Ortega A (2008) A simple and precise linear integral method for isoconversional data. Thermochim Acta 474:81–86

    Article  CAS  Google Scholar 

  • Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim 2(3):301–324

    Article  CAS  Google Scholar 

  • Ozawa T (1986) Non-isothermal kinetics and generalized time. Thermochim Acta 100(1):109–118

    Article  CAS  Google Scholar 

  • Paik P, Kar KK (2009) Thermal degradation kinetics and estimation of lifetime of polyethylene particles: effects of particle size. Mater Chem Phys 113:953–961

    Article  CAS  Google Scholar 

  • Parthasarathy P, Sheeba Narayanan K, Arockiam L (2013) Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass Bioenergy 58:58–66

    Article  CAS  Google Scholar 

  • Pau DSW, Fleischmann CM, Spearpoint MJ, Li KY (2013) Determination of kinetic properties of polyurethane foam decomposition for pyrolysis modelling. J Fire Sci 31(4):356–384

    Article  Google Scholar 

  • Pierre F, Almeida G, Brito JO, Perré P (2011) Influence of torrefaction on some chemical and energy properties of maritime pine and pedunculate oak. Bioresources 6(2):1204–1218

    CAS  Google Scholar 

  • Rath J, Wolfinger MG, Steiner G, Krammer G, Barontini F, Cozzani V (2003) Heat of wood pyrolysis. Fuel 82:81–91

    Article  Google Scholar 

  • Roberts AF (1970) A review of kinetics data for the pyrolysis of wood and related substances. Combust Flame 14(2):261–272

    Article  CAS  Google Scholar 

  • Saka S (2000) Chemical composition and distribution. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 51–81

    Google Scholar 

  • Santos RB, Capanema EA, Balakshin MY, Chang H-M, Jameel H (2011) Effect of hardwoods characteristics on kraft pul** process: emphasis on lignin structure. Bioresources 6(4):3623–3637

    CAS  Google Scholar 

  • Schwaiger N, Feiner R, Zahel K, Pieber A, Witek V, Pucher P, Ahn E, Wilhelm P, Chernev B, Schröttner H, Siebenhofer M (2011) Liquid and solid products from liquid-phase pyrolysis of softwood. Bioenerg Res 4:294–302

    Article  Google Scholar 

  • Shafizadeh F (1984) The chemistry of pyrolysis and combustion. In: Rowell RM (ed) The chemistry of solid wood. Advances in chemistry series, chap 13, vol 207. American Chemical Society, Washington, pp 489–529

    Chapter  Google Scholar 

  • Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23(5):1431–1442

    Article  CAS  Google Scholar 

  • Shafizadeh F, Fu YL (1973) Pyrolysis of cellulose. Carbohydrate Res 29:113–122

    Article  CAS  Google Scholar 

  • Shen DK, Gu S, ** B, Fang MX (2011) Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresour Technol 102:2047–2052

    Article  CAS  Google Scholar 

  • Siti Alwani M, Abdul Khalil HPS, Sulaiman O, Islam MN, Dungani R (2014) An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. Bioresources 9(1):218–230

    Google Scholar 

  • Sjöström E (1981) Wood polysaccharides: wood chemistry, fundamentals and applications. Academic Press, New York, pp 51–67

    Google Scholar 

  • Slavov G, Allison G, Bosch M (2013) Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus. Front Plant Sci 4:217–221

    Article  Google Scholar 

  • Teng H, Wei YC (1998) Thermogravimetric studies on the kinetics of rice hull pyrolysis and the influence of water treatment. Ind Eng Chem Res 37:3806–3811

    Article  CAS  Google Scholar 

  • Timell TE (1965) Wood hemicelluloses. Part II. Adv Carbohydr Chem 19:409–483

    Google Scholar 

  • Truhlar DG, Garrett BC, Klippenstein SJ (1996) Current status of transition-state theory. J Phys Chem 100(31):12771–12800

    Article  CAS  Google Scholar 

  • Ungerer P, Pelet R (1987) Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327:52–54

    Article  CAS  Google Scholar 

  • Várhegyi G (2007) Aims and methods in non-isothermal reaction kinetics. J Anal Appl Pyrol 79:278–288

    Article  Google Scholar 

  • Várhegyi G, Bobály B, Jacab E, Chen H (2011) Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy Fuels 25:24–32

    Article  Google Scholar 

  • Victoria Navarro M, Martínez JD, Murillo R, García T, López JM, Soledad Callén M, Mastral AM (2012) Application of a particle model to pyrolysis. Comparison of different feedstock: plastic, tyre, coal and biomass. Fuel Process Technol 103:1–8

    Article  Google Scholar 

  • Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M (2008) A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol 81(2):253–262

    Article  CAS  Google Scholar 

  • Vyazovkin S (1996) A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet 28(2):95–101

    Article  CAS  Google Scholar 

  • Vyazovkin S (1997) Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem 18(3):393–402

    Article  CAS  Google Scholar 

  • Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22(2):178–183

    Article  CAS  Google Scholar 

  • Wagenaar BM, Prins W, van Swaaij WPM (1993) Flash pyrolysis kinetics of pine wood. Fuel Process Technol 36:291–298

    Article  CAS  Google Scholar 

  • Wang G, Li W, Li B, Chen H (2008) TG study on pyrolysis of biomass and its three components under syngas. Fuel 87:552–558

    Article  CAS  Google Scholar 

  • Weng J, Jia L, Sun S, Wang Y, Tang X, Zhou Z, Qi F (2013) On-line product analysis of pine wood pyrolysis using synchrotron vacuum ultraviolet photoionization mass spectrometry. Anal Bioanal Chem 405:7097–7105

    Article  CAS  Google Scholar 

  • Worasuwannarak N, Sonobe T, Tanthapanichakoon W (2007) Pyrolysis behaviors of rice straw, rice husk, and corncob by TG–MS technique. J Anal Appl Pyrol 78:265–271

    Article  CAS  Google Scholar 

  • Wright MM, Brown RC (2011) Costs of thermochemical conversion of biomass to power and liquid fuels. In: Brown RC (ed) Thermochemical processing of biomass: conversion into fuels, chemicals and power, chap 10. Wiley, Chichester, pp 307–321

    Chapter  Google Scholar 

  • Wright MM, Satrio JA, Brown RC, Daugaard DE, Hsu DD (2010) Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Technical report NREL/TP-6A20-46586, Nov 2010, Contract no DE-AC36-08GO28308, National Laboratory of the US Department of Energy, Office of Energy Efficiency & Renewable Energy, Colorado, USA

  • Yang L, Chen X, Zhou X, Fan W (2003) The pyrolysis and ignition of charring materials under an external heat flux. Combust Flame 133:407–413

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  CAS  Google Scholar 

  • Yulin L (2008) Kinetic and mechanistic studies of a biomimetic catalyst for hemicellulosic biomass hydrolysis. PhD thesis, lecture no 3344068, Purdue University, June 2008, West Lafayette, IN, pp 27–40

Download references

Acknowledgments

This research work was partially supported by the Ministry of Science and Environmental Protection of Serbia under project no. 172015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Janković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janković, B. The pyrolysis process of wood biomass samples under isothermal experimental conditions—energy density considerations: application of the distributed apparent activation energy model with a mixture of distribution functions. Cellulose 21, 2285–2314 (2014). https://doi.org/10.1007/s10570-014-0263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0263-x

Keywords

Navigation