Log in

Distributions of kinetic pathways in strain relaxation of heteroepitaxial films

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The kinetic relaxation pathways for strained heteroepitaxial films are mapped using a process simulator that integrates experimental and model descriptions of the energetic and kinetic parameters that define the nucleation, propagation, and interaction of strain relieving dislocations. This paper focuses on GexSi1−x/Si(100), but the methodologies described should be extendible to other systems. The kinetic pathways for strain evolution are plotted for film growth as functions of the primary kinetic parameters: growth temperature, growth rate, and initial lattice mismatch, generating relaxation surfaces for parameter pairs. Sensitivity analyses are presented of how deviations from mean parameters disperse the resultant relaxation surfaces. Finally, multi-parameter “fingerprinting” of the dislocation array is shown to illustrate how fundamental kinetic mechanisms—particularly dislocation nucleation mechanisms—define the final dislocation array. The overarching goal is to establish a robust framework for predicting, interrogating, and optimizing strain relaxation pathways and underlying mechanisms, for misfit dislocations in strained heteroepitaxial films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

Notes

  1. We note that this asymptotic approach to zero is correct for systems with symmetric strain relaxation mechanisms (i.e., equivalent relaxation rates for orthogonal in-plane directions), as applies for GexSi1−x/Si(100), but not for systems with asymmetric strain relaxation mechanisms as described for the GexSi1−x/Si(110) system in Ref. 2.

  2. http://www.predictdislocationsin3n.com.

References

  1. R. Hull, D. Andersen, H. Parveneh, and J.C. Bean: Materials genomics of thin film strain relaxation by misfit dislocations. J. Appl. Phys. 118, 225306 (2015).

    Article  CAS  Google Scholar 

  2. D. Andersen and R. Hull: Effect of asymmetric strain relaxation on dislocation relaxation processes in heteroepitaxial semiconductors. J. Appl. Phys. 121, 075302 (2017).

    Article  CAS  Google Scholar 

  3. J.H. Van der Merwe: Crystal interfaces. Part I. Semi-infinite crystals. J. Appl. Phys. 34, 117 (1963).

    Article  Google Scholar 

  4. J.H. Van der Merwe: Equilibrium structure of a thin epitaxial film. J. Appl. Phys. 41, 4725 (1970).

    Article  Google Scholar 

  5. J.H. Van der Merwe: Misfit dislocation generation in epitaxial layers. Crit. Rev. Solid State Mater. Sci. 17, 187 (1991).

    Article  Google Scholar 

  6. J.W. Matthews and A.E. Blakeslee: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118 (1974).

    CAS  Google Scholar 

  7. J.W. Matthews and A.E. Blakeslee: Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks. J. Cryst. Growth 29, 273 (1975).

    Article  CAS  Google Scholar 

  8. J.W. Matthews and A.E. Blakeslee: Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers. J. Cryst. Growth 32, 265 (1976).

    Article  CAS  Google Scholar 

  9. B.W. Dodson and J.Y. Tsao: Relaxation of strained-layer semiconductor structures via plastic flow. Appl. Phys. Lett. 51, 1325 (1987).

    Article  CAS  Google Scholar 

  10. R.A. Coppeta, D. Holec, H. Ceric, and T. Grasser: Evaluation of dislocation energy in thin films. Philos. Mag. 95, 186 (2015).

    Article  CAS  Google Scholar 

  11. M. Re, S. Scalese, S. Mirabella, A. Terrasi, F. Priolo, E. Rimini, M. Berti, A. Coati, A. Drigo, A. Carnera, D. De Salvador, C. Spinella, and A. La Mantia: Structural characterization and stability of Si1−xGex/Si(100) heterostructures grown by molecular beam epitaxy. J. Cryst. Growth 227–228, 749 (2001).

    Article  Google Scholar 

  12. J.P. Liu, M.Y. Kong, X.F. Liu, J.P. Li, D.D. Huang, L.X. Li, and D.Z. Sun: Strain-induced morphological evolution and preferential interdiffusion in SiGe epitaxial film on Si(100) during high-temperature annealing. J. Cryst. Growth 201/202, 556 (1999).

    Article  CAS  Google Scholar 

  13. B. Hollander, S. Mantl, B. Stritzker, H. Jorke, and E. Kasper: Strain measurements and thermal stability of Si1−xGex/Si strained layers. J. Mater. Res. 4, 163 (1989).

    Article  Google Scholar 

  14. H. Alexander and P. Haasen: Dislocations and plastic flow in the diamond structure. Solid State Phys. 22, 27 (1969).

    Article  Google Scholar 

  15. M. Imai and K. Sumino: In situ X-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon crystals. Philos. Mag. A 47, 599 (1983).

    Article  CAS  Google Scholar 

  16. I. Yonenaga: Dislocation velocities and mechanical strength of bulk GeSi crystals. Phys. Status Solidi A 171, 41 (1999).

    Article  CAS  Google Scholar 

  17. W. Hagen and H. Strunk: A new type of source generating misfit dislocations. Appl. Phys. 17, 85 (1978).

    Article  CAS  Google Scholar 

  18. K. Rajan and M. Denhoff: Misfit dislocation structure at a Si/SixGe1−x strained-layer interface. J. Appl. Phys. 62, 1710 (1987).

    Article  CAS  Google Scholar 

  19. M. Rzaev, F. Schaffler, V. Vdovin, and T. Yugova: Misfit dislocation nucleation and multiplication in fully strained SiGe/Si heterostructures under thermal annealing. Mater. Sci. Semicond. Process. 8, 137 (2005).

    Article  CAS  Google Scholar 

  20. R. Hull and J.C. Bean: Variation in misfit dislocation behavior as a function of strain in the GeSi/Si system. Appl. Phys. Lett. 54, 925 (1989).

    Article  CAS  Google Scholar 

  21. L.B. Freund: A criterion for arrest of a threading dislocation in a strained epitaxial layer due to an interface misfit dislocation in its path. J. Appl. Phys. 68, 2073 (1990).

    Article  Google Scholar 

  22. E.A. Stach, K.W. Schwarz, R. Hull, F.M. Ross, and R.M. Tromp: New mechanism for dislocation blocking in strained layer epitaxial growth. Phys. Rev. Lett. 84, 947 (2000).

    Article  CAS  Google Scholar 

  23. R. Hull, J.C. Bean, D. Bahnck, L.J. Peticolas, Jr., K.T. Short, and F.C. Unterwald: Interpretation of dislocation propagation velocities in strained GexSi1−x/Si(100) heterostructures by the diffusive kink pair model. J. Appl. Phys. 70, 2052 (1991).

    Article  CAS  Google Scholar 

  24. R. Hull and J.C. Bean: New insights into the microscopic motion of dislocations in covalently bonded semiconductors by in situ transmission electron microscope observations of misfit dislocations in thin strained epitaxial layers. Phys. Status Solidi A 138, 533 (1993).

    Article  CAS  Google Scholar 

  25. C.G. Tuppen and C.J. Gibbings: The kinetics of dislocation glide in SiGe alloy layers. J. Electron. Mater. 19, 1101 (1990).

    Article  CAS  Google Scholar 

  26. D.C. Houghton: Strain relaxation kinetics in Si1−xGex/Si heterostructures. J. Appl. Phys. 70, 2136 (1991).

    Article  CAS  Google Scholar 

  27. Q. Yuan, M.S. Thesis: Misfit Strain Relaxation Mechanisms in Thin Films (University of Virginia, 1999).

    Google Scholar 

  28. J.R. Willis, S.C. Jain, and R. Bullough: Work hardening and strain relaxation in strained-layer buffers. Appl. Phys. Lett. 59, 920 (1991).

    Article  Google Scholar 

  29. V.T. Gillard, W.D. Nix, and L.B. Freund: Role of dislocation blocking in limiting strain relaxation in heteroepitaxial films. J. Appl. Phys. 76, 7280 (1994).

    Article  CAS  Google Scholar 

  30. T. Kujofsa, S. Cheruku, W. Yu, B. Outlaw, S. Xhurxhi, F. Obst, D. Sidoti, B. Bertoli, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers: Relaxation dynamics and threading dislocations in ZnSe and ZnSySe1−y/GaAs(001) heterostructures. J. Electron. Mater. 42, 2764 (2013).

    Article  CAS  Google Scholar 

  31. U. Jain, S.C. Jain, J. Nijs, J.R. Willis, R. Bullough, R.P. Mertens, and R. Van Overstraeten: Calculation of critical-layer-thickness and strain relaxation in GexSi1−x strained layers with interacting 60 and 90° dislocations. Solid-State Electron. 36, 331 (1993).

    Article  CAS  Google Scholar 

  32. J. Menendez: Analytical strain relaxation model for Si1−xGex/Si epitaxial layers. J. Appl. Phys. 105, 063519 (2009).

    Article  CAS  Google Scholar 

  33. T.J. Gosling, S.C. Jain, and A.H. Harker: The kinetics of strain relaxation in lattice-mismatched semiconductor layers. Phys. Status Solidi A 146, 713 (1994).

    Article  CAS  Google Scholar 

  34. E.H. Tan and L.Z. Sun: Dislocation dynamics in semiconductor thin film-substrate systems. Mater. Res. Soc. Symp. Proc. 795, 47 (2004).

    CAS  Google Scholar 

  35. K.W. Schwarz, J. Cai, and P.M. Mooney: Comparison of large-scale layer-relaxation simulations with experiment. Appl. Phys. Lett. 85, 2238 (2004).

    Article  CAS  Google Scholar 

  36. R.S. Fertig and S.P. Baker: Simulation of dislocations and strength in thin films: A review. Prog. Mater. Sci. 54, 874 (2009).

    Article  Google Scholar 

  37. K.W. Schwarz: Discrete dislocation dynamics study of strained-layer relaxation. Phys. Rev. Lett. 91, 145503 (2003).

    Article  CAS  Google Scholar 

  38. E. Kasper, H.J. Herzog, and H. Kibbel: A one-dimensional SiGe superlattice grown by UHV epitaxy. Appl. Phys. 8, 199 (1975).

    Article  CAS  Google Scholar 

  39. E.A. Stach, R. Hull, R.M. Tromp, M.C. Reuter, M. Copel, F.K. LeGoues, and J.C. Bean: Effect of the surface upon misfit dislocation velocities during the growth and annealing of SiGe(001) heterostructures. J. Appl. Phys. 83, 1931 (1998).

    Article  CAS  Google Scholar 

  40. R. Hull: Metastable strained layer configurations in the SiGe/Si system. In Properties of Silicon Germanium and SiGe: Carbon, E. Kasper and K. Lyutovich, eds. (IEE INSPEC, London, U.K., 2000); pp. 21–41.

    Google Scholar 

  41. G.J. Whaley and P.I. Cohen: Relaxation of strained InGaAs during molecular beam epitaxy. Appl. Phys. Lett. 57, 144 (1990).

    Article  CAS  Google Scholar 

  42. J.A. Floro, E. Chason, and S.R. Lee: Real time measurement of epilayer strain using a simplified wafer curvature technique. Mater. Res. Soc. Symp. Proc. 405, 381 (1996).

    Article  CAS  Google Scholar 

  43. H. Yaguchi, K. Fujita, S. Fukatsu, Y. Shiraki, and R. Ito: Strain relaxation in MBE-grown Si1−xGex/Si(100) heterostructures by annealing. Jpn. J. Appl. Phys. 30, 1450 (1991).

    Article  Google Scholar 

  44. G. Bai, M-A. Nicolet, C.H. Chern, and K.L. Wang: Strain relief of metastable GeSi layers on Si(100). J. Appl. Phys. 75, 4475 (1994).

    Article  CAS  Google Scholar 

  45. H. Kuhne: On a substituting, sticking and trap** model of CVD Si1−xGx layer growth. J. Cryst. Growth 125, 291 (1992).

    Article  Google Scholar 

  46. J. **aojun and L. Junwu: Dependence of GexSi1−x epitaxial growth on GeH4 flow using chemical vapour deposition. J. Mater. Sci.: Mater. Electron. 8, 405 (1997).

    CAS  Google Scholar 

  47. X. Yang and M. Tao: A kinetic model for Si1−xGex growth from SiH4 and GeH4 by CVD. J. Electrochem. Soc. 154, H53 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We wish to acknowledge the pioneering and lasting contributions of Jan Van der Merwe who was so instrumental in providing the foundations for the field of strained layer epitaxy, which has provided such scientific richness for so many of us over the decades and which has had enormous and pervasive technological impact in industries from microelectronics to information transmission systems and many others.

This work was supported by the National Science Foundation under Grant Nos. DMR-9531696 (construction of original simulator) and DMR-1309535 (further simulator development and parametric, sensitivity, and fingerprinting analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin Andersen.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, D., Hull, R. Distributions of kinetic pathways in strain relaxation of heteroepitaxial films. Journal of Materials Research 32, 3977–3991 (2017). https://doi.org/10.1557/jmr.2017.374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.374

Navigation