Log in

A progressive predictor-based quantum architecture search with active learning

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quantum architecture search (QAS) algorithms have demonstrated remarkable proficiency in automatically designing high-performance quantum circuits for variational quantum algorithms. Predictor-based QAS (PQAS) is an effective technique to accelerate QAS. It estimates the approximate performances of quantum circuits using a neural network trained on a small subset of circuits and their corresponding ground-truth performances. However, current PQAS algorithms train a single predictor to fit the entire circuit space using limited training samples, which is inefficient and unnecessary, as QAS aims to identify the optimal quantum circuit. In this paper, we propose a progressive PQAS with active learning (PQAS-AL), which gradually trains more precise predictors for subspaces where high-performance circuits reside. PQAS-AL follows an iterative process from coarse to fine. During the early iterations, coarse predictors are trained to identify relatively good subspaces. As the algorithm iterates, an increasing number of high-performance circuits are added to the training set, resulting in the continuous enhancement of the predictor’s ability to recognize high-performance circuits. Moreover, the iterative training of multiple predictors in PQAS-AL also enables the utilization of newly acquired quantum circuits and their corresponding ground-truth performances, resulting in significantly improved sample efficiency. Unlike current QAS algorithms, PQAS-AL naturally integrates the search and performance evaluation modules. Simulation on the Variational Quantum Eigensolver (VQE) for the Heisenberg model demonstrates that PQAS-AL achieves a 2.8\(\times \) reduction in labeled quantum circuits for the same performance compared to the current PQAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. J. Preskill, Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  2. M. Cerezo, A. Arrasmith, R. Babbush, S.C. Benjamin, S. Endo, K. Fujii, J.R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., Variational quantum algorithms. Nat. Rev. Phys. 3, 1–20 (2021)

    Article  Google Scholar 

  3. A. Peruzzo, J. McClean, P. Shadbolt, M.H. Yung, X.Q. Zhou, P.J. Love, A.-G. Alán, L. Jeremy, O’brien a variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  4. O. Higgott, D. Wang, S. Brierley, Variational quantum computation of excited states. Quantum 3, 156 (2019)

    Article  Google Scholar 

  5. T. Jones, S. Endo, S. McArdle, X. Yuan, S.C. Benjamin, Variational quantum algorithms for discovering hamiltonian spectra. Phys. Rev. A 99(6), 062304 (2019)

    Article  ADS  Google Scholar 

  6. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J.M. Chow, J.M. Gambetta, Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

    Article  ADS  Google Scholar 

  7. C. Moussa, H. Calandra, V. Dunjko, To quantum or not to quantum: towards algorithm selection in near-term quantum optimization. Quantum Sci. Technol. 5(4), 044009 (2020)

    Article  ADS  Google Scholar 

  8. S. McArdle, T. Jones, S. Endo, Y. Li, S.C. Benjamin, X. Yuan, Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Inf. 5(1), 1–6 (2019)

    Article  Google Scholar 

  9. Y.-X. Yao, N. Gomes, F. Zhang, C.-Z. Wang, K.-M. Ho, T. Iadecola, P.P. Orth, Adaptive variational quantum dynamics simulations. PRX Quantum 2(3), 030307 (2021)

    Article  ADS  Google Scholar 

  10. Z. He, L. Li, S. Zheng, Y. Li, H. Situ, Variational quantum compiling with double q-learning. New J. Phys. 23(3), 033002 (2021)

    Article  ADS  Google Scholar 

  11. S. Khatri, R. LaRose, A. Poremba, L. Cincio, A.T. Sornborger, P.J. Coles, Quantum-assisted quantum compiling. Quantum 3, 140 (2019)

    Article  Google Scholar 

  12. E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. ar**v:1411.4028, (2014)

  13. K. Beer, D. Bondarenko, T. Farrelly, T.J. Osborne, R. Salzmann, D. Scheiermann, R. Wolf, Training deep quantum neural networks. Nat. Commun. 11(1), 1–6 (2020)

    Article  Google Scholar 

  14. J. Shi, Z. Li, W. Lai, F. Li, R. Shi, Y. Feng, S. Zhang, Two end-to-end quantum-inspired deep neural networks for text classification. IEEE Trans. Knowl. Data Eng. 35(4), 4335–4345 (2023)

    Article  Google Scholar 

  15. M.Y. Niu, A. Zlokapa, M. Broughton, S. Boixo, M. Mohseni, V. Smelyanskyi, H. Neven, Entangling quantum generative adversarial networks. Phys. Rev. Lett. 128(22), 220505 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  16. H. Situ, Z. He, Y. Wang, L. Li, S. Zheng, Quantum generative adversarial network for generating discrete distribution. Inf. Sci. 538, 193–208 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. N.-R. Zhou, T.-F. Zhang, X.-W. **e, W. Jun-Yun, Hybrid quantum-classical generative adversarial networks for image generation via learning discrete distribution. Signal Process. Image Commun. 110, 116891 (2023)

    Article  Google Scholar 

  18. M. Cerezo, A. Sone, T. Volkoff, L. Cincio, P.J. Coles, Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12(1), 1–12 (2021)

    Article  Google Scholar 

  19. J.R. McClean, S. Boixo, V.N. Smelyanskiy, R. Babbush, H. Neven, Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 1–6 (2018)

    Article  ADS  Google Scholar 

  20. A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A.T. Sornborger, P.J. Coles, Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11(4), 041011 (2021)

    Google Scholar 

  21. K. Sharma, M. Cerezo, L. Cincio, P.J. Coles, Trainability of dissipative perceptron-based quantum neural networks. Phys. Rev. Lett. 128(18), 180505 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Shi, Y. Tang, L. Yuhu, Y. Feng, R. Shi, S. Zhang, Quantum circuit learning with parameterized boson sampling. IEEE Trans. Knowl. Data Eng. 35(02), 1965–1976 (2023)

    Google Scholar 

  23. D Chivilikhin, A Samarin, V Ulyantsev, I Iorsh, AR Oganov, O Kyriienko. Mog-vqe: Multiobjective genetic variational quantum eigensolver. ar**v:2007.04424, (2020)

  24. L. Cincio, K. Rudinger, M. Sarovar, P.J. Coles, Machine learning of noise-resilient quantum circuits. PRX Quantum 2(1), 010324 (2021)

    Article  Google Scholar 

  25. H.R. Grimsley, S.E. Economou, E. Barnes, N.J. Mayhall, An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10(1), 1–9 (2019)

    Article  Google Scholar 

  26. L. Li, M. Fan, M. Coram, P. Riley, S. Leichenauer et al., Quantum optimization with a novel gibbs objective function and ansatz architecture search. Physical Rev. Res. 2(2), 023074 (2020)

    Article  ADS  Google Scholar 

  27. K. Mitarai, M. Negoro, M. Kitagawa, K. Fujii, Quantum circuit learning. Physical Rev. A 98(3), 032309 (2018)

    Article  Google Scholar 

  28. S.-X. Zhang, C.-Y. Hsieh, S. Zhang, H. Yao, Neural predictor based quantum architecture search. Mach. Learn. Sci. Technol. 2(4), 045027 (2021)

    Article  ADS  Google Scholar 

  29. S.-X. Zhang, C.-Y. Hsieh, S. Zhang, H. Yao, Differentiable quantum architecture search. Quantum Sci. Technol. 7(4), 045023 (2022)

    Article  ADS  Google Scholar 

  30. M. Ostaszewski, E. Grant, M. Benedetti, Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021)

    Article  Google Scholar 

  31. Y. Huang, Q. Li, X. Hou, W. Rebing, M.-H. Yung, A. Bayat, X. Wang, Robust resource-efficient quantum variational ansatz through an evolutionary algorithm. Phys. Rev. A 105(5), 052414 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  32. A.G. Rattew, S. Hu, M. Pistoia, R. Chen, S. Wood, A domain-agnostic, noise-resistant, hardware-efficient evolutionary variational quantum eigensolver. ar**v:1910.09694, (2019)

  33. E.-J. Kuo, Y.-L.L. Fang, S. Yen-Chi Chen. Quantum architecture search via deep reinforcement learning. ar**v:2104.07715, (2021)

  34. M. Ostaszewski, L.M. Trenkwalder, W. Masarczyk, E. Scerri, V. Dunjko, Reinforcement learning for optimization of variational quantum circuit architectures. Adv. Neural Inf. Process. Syst. 34, 18182–18194 (2021)

    Google Scholar 

  35. Y.-H. Zhang, P.-L. Zheng, Y. Zhang, D.-L. Deng, Topological quantum compiling with reinforcement learning. Phys. Rev. Lett. 125(17), 170501 (2020)

    Article  ADS  Google Scholar 

  36. D. Yuxuan, T. Huang, S. You, M.-H. Hsieh, D. Tao, Quantum circuit architecture search for variational quantum algorithms. npj Quantum Inf. 8(1), 1–8 (2022)

    Google Scholar 

  37. Z. He, M. Deng, S. Zheng, L. Li, H. Situ, Gsqas: graph self-supervised quantum architecture search. ar**v:2303.12381, (2023)

  38. H. Wang, Y. Ding, J. Gu, Y. Lin, D.Z. Pan, F.T. Chong, S. Han, Quantumnas: Noise-adaptive search for robust quantum circuits. In International Symposium on High-Performance Computer Architecture (HPCA), pp 692–708. IEEE, (2022)

  39. Z. He, X. Zhang, C. Chen, Z. Huang, Y. Zhou, H. Situ, A GNN-based predictor for quantum architecture search. Quantum Inf. Process. 22(2), 128 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Y. Gal, R. Islam, Z. Ghahramani, Deep bayesian active learning with image data. In International Conference on Machine Learning, 1183–1192. PMLR, (2017)

  41. D. Wang, Y. Shang, A new active labeling method for deep learning. In International Joint Conference on Neural Networks, pp 112–119. IEEE, (2014)

  42. T. Wang, X. Li, P. Yang, H. Guosheng, X. Zeng, S. Huang, X. Cheng-Zhong, X. Min, Boosting active learning via improving test performance. Procee. AAAI Conf. Artif. Intell. 36, 8566–8574 (2022)

    Google Scholar 

  43. E. Bıyık, K. Wang, N. Anari, D. Sadigh, Batch active learning using determinantal point processes. (2019) ar**v:1906.07975

  44. G. Citovsky, G. DeSalvo, C. Gentile, L. Karydas, A. Rajagopalan, A. Rostamizadeh, S. Kumar, Batch active learning at scale. Adv. Neural Inf. Process. Syst. 34, 11933–11944 (2021)

    Google Scholar 

  45. C. Shui, F. Zhou, C. Gagné, B. Wang, Deep active learning: Unified and principled method for query and training. In International Conference on Artificial Intelligence and Statistics, pp 1308–1318. PMLR, (2020)

  46. X. Zhan, Q. Li, A.B. Chan, Multiple-criteria based active learning with fixed-size determinantal point processes. In Subset Selection in Machine Learning: From Theory to Applications (SubSetML@ ICML2021), (2021)

  47. F. Zhdanov, Diverse mini-batch active learning. ar**v:1901.05954, (2019)

  48. K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks? In International Conference on Learning Representations, (2019)

  49. L. van der Maaten, G.E. Hinton, Visualizing data using t-SNE. Journal of Machine Learning Research, (2008)

Download references

Acknowledgements

This work is supported by Guangdong Basic and Applied Basic Research Foundation (Nos. 2022A1515140116, 2022A15 15010101, 2021A1515011985), National Natural Science Foundation of China (No.  61972091), and Innovation Program for Quantum Science and Technology (No. 2021ZD0302900). SZ was supported by the Major Key Project of PCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin He.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, M., He, Z., Zheng, S. et al. A progressive predictor-based quantum architecture search with active learning. Eur. Phys. J. Plus 138, 905 (2023). https://doi.org/10.1140/epjp/s13360-023-04537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04537-6

Navigation