Log in

Comparison of numerical models for bulk and surface acoustic wave-induced acoustophoresis in a microchannel

  • Technical Report
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Acoustophoresis induced by either bulk or surface acoustic wave has great potential to manipulate microparticles and biological substances because of its simple setup, low power consumption, and high generated force. Numerical models for simulating acoustophoresis in a microchannel are required to further understand the underlying mechanisms (i.e., standing acoustic wave and microparticle motion) and optimize the design. Simplified models that only consider the channel walls as actuation and impedance boundaries are available. In this study, full-sized models were established to include many phenomena and physical interactions involved and then compared with the simulation results using the simplified models. Distributions of acoustic pressure, streaming velocity, radiation force, and trajectory of 1 µm and 10 µm microparticles were calculated for further understanding of acoustofluidics. Overall, the full-sized models can provide an accurate guideline for the application and development of acoustophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request contacting with the corresponding author.]

References

  1. M. Antfolk, C. Magnusson, P. Augustsson, H. Lilja, T. Laurell, Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal. Chem. 87, 9322–9328 (2015). https://doi.org/10.1021/acs.analchem.5b02023

    Article  Google Scholar 

  2. R. Barnkob, N. Nama, L. Ren, T.J. Huang, F. Costanzo, C.J. Kähler, Acoustically driven fluid and particle motion in confined and leaky systems. Phys. Rev. Appl. 9, 014027 (2018). https://doi.org/10.1103/PhysRevApplied.9.014027

    Article  ADS  Google Scholar 

  3. O. Bü̈hler, Waves and Mean Flows (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  4. A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, L. Ricotti, Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures. Acta Biomater. 49, 368–378 (2017). https://doi.org/10.1016/j.actbio.2016.11.049

    Article  Google Scholar 

  5. X. Ding, P. Li, S.-C.S. Lin, Z.S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, Surface acoustic wave microfluidics. Lab Chip 13, 3626–3649 (2013). https://doi.org/10.1039/C3LC50361E

    Article  Google Scholar 

  6. X. Ding, Z. Peng, S.-C.S. Lin, M. Geri, S. Li, P. Li, Y. Chen, M. Dao, S. Suresh, T.J. Huang, Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. 111, 12992–12997 (2014). https://doi.org/10.1073/pnas.1413325111

    Article  ADS  Google Scholar 

  7. J. Dual, T. Schwarz, Acoustofluidics 3: continuum mechanics for ultrasonic particle manipulation. Lab Chip 12, 244–252 (2012). https://doi.org/10.1039/9781849737067-00046

    Article  Google Scholar 

  8. T. Franke, S. Braunmüller, L. Schmid, A. Wixforth, D. Weitz, Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10, 789–794 (2010). https://doi.org/10.1039/B915522H

    Article  Google Scholar 

  9. L.P. Gor’kov, On the forces acting on a small particle in an acoustic field in an ideal fluid. Sov. Phys. Dokl. 6, 773–775 (1962)

    ADS  Google Scholar 

  10. N. Harris, M. Hill, S. Beeby, Y. Shen, N. White, J. Hawkes, W. Coakley, A silicon microfluidic ultrasonic separator. Sens. Actuat. B Chem. 95, 425–434 (2003). https://doi.org/10.1016/s0925-4005(03)00448-9

    Article  Google Scholar 

  11. H. Jönsson, C. Holm, A. Nilsson, F. Petersson, P. Johnsson, T. Laurell, Particle separation using ultrasound can radically reduce embolic load to brain after cardiac surgery. Ann. Thorac. Surg. 78, 1572–1577 (2004). https://doi.org/10.1016/j.athoracsur.2004.04.071

    Article  Google Scholar 

  12. M. Koklu, A.C. Sabuncu, A. Beskok, Acoustophoresis in shallow microchannels. J. Colloid Interface Sci. 351, 407–414 (2010). https://doi.org/10.1016/j.jcis.2010.08.029

    Article  ADS  Google Scholar 

  13. I. Leibacher, P. Reichert, J. Dual, Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis. Lab Chip 15, 2896–2905 (2015). https://doi.org/10.1039/c5lc00083a

    Article  Google Scholar 

  14. A. Lenshof, M. Evander, T. Laurell, J. Nilsson, Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12, 684–695 (2012). https://doi.org/10.1039/c1lc20996e

    Article  Google Scholar 

  15. Z. Mandralis, D. Feke, W. Bolek, W. Burger, E. Benes, Enhanced synchronized ultrasonic and flow-field fractionation of suspensions. Ultrasonics 32, 113–122 (1994). https://doi.org/10.1016/0041-624x(94)90019-1

    Article  Google Scholar 

  16. Z.I. Mandralis, D.L. Feke, Continuous suspension fractionation using acoustic and divided-flow fields. Chem. Eng. Sci. 48, 3897–3905 (1993). https://doi.org/10.1016/0009-2509(93)80368-z

    Article  Google Scholar 

  17. P.B. Muller, R. Barnkob, M.J.H. Jensen, H. Bruus, A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12, 4617–4627 (2012). https://doi.org/10.1039/c2lc40612h

    Article  Google Scholar 

  18. N. Nama, R. Barnkob, Z. Mao, C.J. Kähler, F. Costanzo, T.J. Huang, Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves. Lab Chip 15, 2700–2709 (2015). https://doi.org/10.1039/C5LC00231A

    Article  Google Scholar 

  19. N. Nama, T.J. Huang, F. Costanzo, Acoustic streaming: an arbitrary Lagrangian–Eulerian perspective. J. Fluid Mech. 825, 600–630 (2017). https://doi.org/10.1017/jfm.2017.338

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Neild, S. Oberti, J. Dual, Design, modeling and characterization of microfluidic devices for ultrasonic manipulation. Sens. Actuat. B Chem. 121, 452–461 (2007). https://doi.org/10.1016/j.snb.2006.04.065

    Article  Google Scholar 

  21. A. Neild, S. Oberti, A. Haake, J. Dual, Finite element modeling of a microparticle manipulator. Ultrasonics 44, e455–e460 (2006). https://doi.org/10.1016/j.ultras.2006.05.168

    Article  Google Scholar 

  22. Z. Ni, C. Yin, G. Xu, L. **e, J. Huang, S. Liu, J. Tu, X. Guo, D. Zhang, Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain. Lab Chip 19, 2728–2740 (2019). https://doi.org/10.1039/C9LC00431A

    Article  Google Scholar 

  23. F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, T. Laurell, Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem. 79, 5117–5123 (2007). https://doi.org/10.1021/ac070444e

    Article  Google Scholar 

  24. F. Petersson, A. Nilsson, C. Holm, H. Jönsson, T. Laurell, Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst 129, 938–943 (2004). https://doi.org/10.1039/B409139F

    Article  ADS  Google Scholar 

  25. F. Petersson, A. Nilsson, C. Holm, H. Jönsson, T. Laurell, Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5, 20–22 (2005). https://doi.org/10.1039/B405748C

    Article  Google Scholar 

  26. M. Settnes, H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E 85, 016327 (2012). https://doi.org/10.1103/PhysRevE.85.016327

    Article  ADS  Google Scholar 

  27. N. Skov, H. Bruus, Modeling of microdevices for SAW-based acoustophoresis—a study of boundary conditions. Micromachines 7, 182 (2016). https://doi.org/10.3390/mi7100182

    Article  Google Scholar 

  28. F.J. Trujillo, P. Juliano, G. Barbosa-Canovas, K. Knoerzer, Separation of suspensions and emulsions via ultrasonic standing waves—a review. Ultrason. Sonochem. 21, 2151–2164 (2014). https://doi.org/10.1016/j.ultsonch.2014.02.016

    Article  Google Scholar 

  29. J. Vanneste, O. Bühler, Streaming by leaky surface acoustic waves. Proc. R. Soc. A 467, 1779–1800 (2011). https://doi.org/10.1098/rspa.2010.0457

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. Wu, P.H. Huang, R. Zhang, Z. Mao, C. Chen, G. Kemeny, P. Li, A.V. Lee, R. Gyanchandani, A.J. Armstrong, Circulating tumor cell phenoty** via high-throughput acoustic separation. Small 14, 1801131 (2018). https://doi.org/10.1002/smll.201801131

    Article  Google Scholar 

  31. M. Wu, A. Ozcelik, J. Rufo, Z. Wang, R. Fang, T.J. Huang, Acoustofluidic separation of cells and particles. Microsyst. Nanoeng. 5, 32 (2019). https://doi.org/10.1038/s41378-019-0064-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academic Research Fund (AcRF Tier 1, RG47/18), Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Contributions

In this work, Dr. Zhou made the simulation, performed data analysis, and wrote the manuscript.

Corresponding author

Correspondence to Yufeng Zhou.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest. Also, the funding sponsor had no role in the design of the study, the collection, analyses or interpretation of data, nor in the writing of the manuscript and in the decision to publish the results.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y. Comparison of numerical models for bulk and surface acoustic wave-induced acoustophoresis in a microchannel. Eur. Phys. J. Plus 135, 696 (2020). https://doi.org/10.1140/epjp/s13360-020-00697-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00697-x

Navigation